Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > BINF029
Autenticação




Esqueceu-se da senha?

Modeling of Biological Processes

Code: BINF029     Sigla: MPB

Áreas Científicas
Classificação Área Científica
OFICIAL Biotecnologia

Ocorrência: 2018/2019 - 1S

Ativa? Yes
Unidade Responsável: Biotecnologia
Curso/CE Responsável: Undergraduate in Bioinformatics

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
BINF 7 Study Plan 3 - 5 60 135

Docência - Responsabilidades

Docente Responsabilidade
Sónia Alexandra Paiva dos Santos

Docência - Horas

Theorethical: 1,50
Practical and Laboratory: 2,00
Type Docente Turmas Horas
Theorethical Totais 1 1,50
Sónia Alexandra Paiva dos Santos 0,50
Rafael Sousa Costa 1,00
Practical and Laboratory Totais 1 2,00
Rafael Sousa Costa 2,00

Língua de trabalho

Portuguese

Objetivos

This UC goal is to provide students with the mathematical skills to model and simulate biological/biochemical systems from a kinetic/metabolic perspective. This stems from the biochemical systems theory, in which biochemical systems can be modelled using differential equations, encompassing not only kinetics and flows but also regulation processes and compartments. This UC also includes models of pharmacokinetic origin, as this was introduced in the subject “Metabolismo e Regulação” and will be used in the subject “Laboratório de Bioinformática".

Resultados de aprendizagem e competências

.

Modo de trabalho

Presencial

Programa

1.Modeling enzymatic reactions: enzyme kinetics; mechanisms of activation and inhibition; mathematical modeling of one enzyme systems – mass action laws, power laws, and Henri-Michaelis-Menten law
2.Modeling metabolic networks I: using mass action laws and power laws to describe a 1-compartment
metabolic system; system analysis under the framework of metabolic control analysis
3. Modeling metabolic networks II: understanding parallel alternative pathways and what triggers switching among them
4.Modeling metabolic networks III: the role of genes, single gene, probabilistic prokaryotic gene, and
eukaryotic cis-regulatory control modeling
5.Modelling metabolic networks IV: the case of drugs
6. Modeling compartments I: flow between compartments; transporters
7.Modeling compartments II: a basic overview of the cell as a multitude of communicating compartments; inter-compartment signaling as an approach to extracellular modeling
8.Modeling compartments III: pharmacokinetics

Bibliografia Obrigatória

Fell, D.; Understanding the Control of Metabolism (Frontiers in Metabolism), Portland Press. ISBN: 978-1- 855-78047-7
Bower, J.M., Bolouri, H. (eds.); Computational Modeling of Genetic and Biochemical Networks. ISBN: 978-0-262-52423-0
Britton, N.F.; Essential Mathematical Biology, Springer. ISBN: 978-1-852-33536-6
Peters, S.A.; Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations: Principles, Methods, and Applications in the Pharmaceutical Industry, Wiley. ISBN: 978-0-470-48406-7

Métodos de ensino e atividades de aprendizagem

1. 1,5 h weekly demonstrative lectures
2. 1,5 h weekly exercises class that will be focused on showcasing a large number of simple examples the various mathematical models that arise in this area.

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Teste 70,00
Trabalho escrito 30,00
Total: 100,00

Fórmula de cálculo da classificação final

Continuous Assessment:
0,35 x test 1 + 0,35 x Test 2 + 0,15 x Work 1 + 0,15 x Work 2


Exam
1,00 x Exam
or
0,70 x Exam + 0,15 x Work 1 + 0,15 x Work 2
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 12:57:46