Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > BINF025
Autenticação




Esqueceu-se da senha?

Big Data

Code: BINF025     Sigla: BD

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2020/2021 - 1S

Ativa? Yes
Unidade Responsável: Matemática e Informática
Curso/CE Responsável: Undergraduate in Bioinformatics

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
BINF 14 Study Plan 3 - 5 52,5 135

Docência - Responsabilidades

Docente Responsabilidade
Maria Raquel Feliciano Barreira

Docência - Horas

Theorethical and Practical : 1,50
Practical and Laboratory: 1,50
Type Docente Turmas Horas
Theorethical and Practical Totais 1 1,50
Maria Raquel Feliciano Barreira 1,50
Practical and Laboratory Totais 1 1,50
Maria Raquel Feliciano Barreira 1,50

Língua de trabalho

Portuguese

Objetivos





Students who complete this course successfully should be able to :

- Know a set of non-conventional threads to enable a scalable data management, as well as the use of parallel algorithms and statistical modeling, with and without the use of the cloud ;

- Be proficient in an ecosystem of tools and platforms to allow them, in the face of a concrete problem, to determine the solution to be applied and the tools to be used in storage, exploration and analysis of large volumes of data.





Resultados de aprendizagem e competências

Not applicable

Modo de trabalho

Presencial

Programa





1. Introduction
History and context. Overview of Big Data technology . Science data . Search, indexing and memory

2. Large scale data handling
Large Scale Storage System. MapReduce and Hadoop . Relation to current databases, streams , algorithms, extensions and languages. Parallel query processing and computational analysis of statistics. Key - value storage ; Comparing SQL databases and non- SQL

3. Communication of results
Visualization of computational results. Sources of data, privacy, ethics and governance

4. Special Topics
Analysis of graphs : structure , crossings , computational analysis, PageRank, recursive queries, semantic web, advertising and recommendation systems on the internet .





Bibliografia Obrigatória

Sadalage et al.; No SQL distilled : a brief guide to the emerging world of polyglot persistence, Pearson Education, 2012
O'Neil, C. and Schutt, R.; Doing Data Science: Straight Talk from the Frontline, 2013
Leskovec, J., Rajaraman, A., Ullman, K.; Mining of Massive Datasets, Cambridge University Press, 2nd Ed., 2014
White, T.; Hadoop: The Definitive Guide, O'Reilly, 2015
Wilke, C. O; Data Visualisation, O’Reilly, 2019

Bibliografia Complementar

Knaflick, N. C; Storytelling with data, Wiley, 2015

Métodos de ensino e atividades de aprendizagem





As teaching methodology the following approaches will be adopted:

1. Oral presentation of the basic concepts and tools

2. Preparation of laboratory work

Continuous assessment will be based on two projects and a written test.

Final assessment will be based on two projects and on written exam.





Software

Python
MongoDb

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Teste 30,00
Trabalho escrito 70,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 82,50
Frequência das aulas 52,50
Total: 135,00

Obtenção de frequência

Not applicable

Fórmula de cálculo da classificação final

Continuous assessment


  • 30%*project1+40%*project2+30%*testt




Final assessment



  • 30%*project1+40%*project2+30%*exam

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 12:40:16