Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > CVD039
Autenticação




Esqueceu-se da senha?

Programming and Numerical Computing

Code: CVD039     Sigla: PCN

Áreas Científicas
Classificação Área Científica
OFICIAL Matemática e Informática

Ocorrência: 2019/2020 - 2S

Ativa? Yes
Página Web: https://moodle.ips.pt/1920/course/view.php?id=3162
Unidade Responsável: Secção Matemática e Gestão
Curso/CE Responsável: Undergraduate in Civil Engineering

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
CIVD 3 Study Plan 2 - 4 67,5 108

Docência - Responsabilidades

Docente Responsabilidade
Maria Raquel Feliciano Barreira

Docência - Horas

Theorethical and Practical : 3,50
Type Docente Turmas Horas
Theorethical and Practical Totais 1 3,50
Maria Raquel Feliciano Barreira 2,75

Língua de trabalho

Portuguese - Suitable for English-speaking students

Objetivos

It is intended that the student acquires programming and numerical calculus skills.

At the end of the course, the student should be able to:



  • Understand the basic programming principles that will allow the student to adapt to new programming languages;

  • Develop logical reasoning;

  • Understand and apply numerical methods to solve mathematical problems: nonlinear equations, polynomial approximation of functions, numerical integration and ordinary differential equations;

  • Implement the algorithms obtained from the numerical methods and apply them to Civil Engineering problems;

  • Recognize the advantages, disadvantages and limitations of each method;


Develop teamwork skills.

Resultados de aprendizagem e competências

Ability to implement and algorithm computationally.
Ability to apply numerical calculus to a mathematical problem.
Ability to recognize problems in Civil Engineering requiring a numerical approach for its resolution.
Improvement of team work skills.

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)

Previous knowledge about real functions (continuity, differentiability, integration) and about ordinary differential equations.

Programa


  1. Introduction to programming: constants, variables, operators (arithmetic, relational and logical), functions (2 weeks)

  2. Pseudocode: structure of na algorithm, declaration of variables, assignment of values,, comments, input and output data, basic structures (sequential, conditional and repetition) (3 weeks);

  3. Error theory: absolute error, relative error, propagation of errorsn(1 week)

  4. Calculation of roots of nonlinear functions: fixed point, bisection, secant and Newton-Raphson methods (1 week);

  5. Function interpolation: Lagrange and Newton methods (2 weeks)

  6. Numerical integration: (2 weeks)

    1. Problems arising from Civil Engineering that require numerical integration

    2. Difference between algebraic integration and numerical integration

    3. Rules for numerical integration: Newton-Cotes and Gauss quadrature



  7. Numerical resolution of ordinary differential equations (odes) (4 weeks);

    1. Introduction to the numerical resolution of odes

    2. Euler and Runge-Kutta methods



Bibliografia Obrigatória

Chapra, S.C., Canale, R. P.; Numerical Methods for Engineers - 7th edition, McGraw-Hill, 2015
Correia dos Santos, F., Duarte, J., Lopes, N. D.; Fundamentos de Análise Numérica com Python 3 e R – 2ª edição, Edições Sílabo, 2019
Guttag, J. V; Introduction to Computation and Programming Using Python, MIT Press, 2013

Bibliografia Complementar

Liang, Y.D.; Introduction to Programming Using Python, Pearson, 2013
Quarteroni, A., Salero, F. ; Cálculo Científico com Matlab e Octave, Springer, 2006
Burden, R. L., Faires, D. J.,Burden, A. M.; Numerical Analysis – 10th Edition, Cengage Learning, 2016

Métodos de ensino e atividades de aprendizagem

In the theoretical-practical classes, the concepts will be introduced, with the help of application exemples whenever possible, trying to stimulate the interest, reasoning and critical thinking of the sudents.

The laboratory classes will take place in computer rooms and will be dedicated to the resolution of programming exercises that allow the student to put into practice the knoweledge acquired. A programming language will be introduced in order to implement the concepts.

Team work will be encouraged.

Software

Jupiter Notebook
Python3

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Teste 30,00
Trabalho escrito 70,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Elaboração de projeto 12,00
Frequência das aulas 52,50
Trabalho escrito 6,00
Estudo autónomo 37,50
Total: 108,00

Obtenção de frequência

Not applicable

Fórmula de cálculo da classificação final

10%*assignment1+10%*assigment2+10%*assignment3+30%*test+40%*project

Minimum of 8.0 marks required for the test and for the project
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-22 às 21:08:02