Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > BINF020
Autenticação




Esqueceu-se da senha?

Machine Learning

Code: BINF020     Sigla: AA

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2022/2023 - 2S

Ativa? Yes
Unidade Responsável: Departamento de Matemática e Informática
Curso/CE Responsável: Undergraduate in Bioinformatics

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
BINF 22 Study Plan 2 - 5 52,5 135

Docência - Responsabilidades

Docente Responsabilidade
António Leonardo Gonçalves

Docência - Horas

Theorethical and Practical : 3,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 3,00
António Leonardo Gonçalves 3,00

Língua de trabalho

Portuguese

Objetivos









Students should become familiar with the algorithmic foundations of machine learning, as well as techniques for solving the challenges presented by each dataset. They should be able to select appropriate algorithms for each problem and apply the algorithms to new datasets and understand and evaluate their results.


Learning outcomes and competences
- Understanding of the fundamentals of machine learning algorithms and methodologies presented
- Ability to justify the choice of a machine learning solution to a given problem
- Ability to apply the algorithms to new data sets
- Ability to evaluate the results










Resultados de aprendizagem e competências

Not applicable

Modo de trabalho

Presencial

Programa










- Introduction
- Simple classification and regression models (linear and nearest-neighbour models) and their validation: learning paradigms, loss functions, bias and variance error.

- Model inference methods: Search, Expectation-maximization, clustering.

- Kernel methods.

- Neural networks, deep models and representation learning

- Matrix factorization

- Evaluation of models

- Unsupervised, semi-supervised and weakly supervised pattern discovery.










Bibliografia Obrigatória

Aurélien Géron; Hands-on Machine Learning with Scikit-Learn,Keras, and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems Keras, and TensorFlow
Andriy Burkov; The Hundred-Page Machine Learning Book

Bibliografia Complementar

Hastie Trevor;; he elements of statistical learning. ISBN: 0-387-95284-5

Métodos de ensino e atividades de aprendizagem









The predominant teaching methodologies will be the presentation of concepts, using slides and the demonstration of examples in the computer laboratory. Students will be constantly challenged to solve new problems, based on the examples already demonstrated, and to reflect on the results and performance of the storage and processing processes under study.









Software

Python
anaconda

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Teste 30,00
Trabalho escrito 70,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 90,00
Frequência das aulas 45,00
Total: 135,00

Obtenção de frequência

Not applicable

Fórmula de cálculo da classificação final

Continuous assessment


  • 30%*project+70%*testt




Final assessment



  • 30%*project+70%*exam



The 100% assessment regime per exam is not applicable (that is, an exception regime is applied) since, according to the learning objectives and the skills to be acquired, the student must have a strong practical component in the use of tools for storage and processing of big data.
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 14:44:17