Biofuels
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Processos em Engenharia Química e Biológica |
Ocorrência: 2023/2024 - 2S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
TPD |
26 |
Study Plan |
2 |
- |
5,5 |
75 |
148,5 |
Docência - Responsabilidades
Língua de trabalho
Portuguese - Suitable for English-speaking students
Obs.: A aula e os materiais são apresentados em português e em inglês.
Objetivos
The aim of the curricular unit is to supply the students with a general panoramic of the biofuels field, namely, of solid, liquid and gaseous biofuels, giving also a perspective on the present and future of bioenergies. It is intended that the students learn the sources and main properties of biomasses used as row materials to produce the different biofuels in relation with the technologies used. Finally students must be able to perform simple calculations related with the unit operations involved in the production of the biofuels studied.
Resultados de aprendizagem e competências
NA
Modo de trabalho
Presencial
Programa
1 Background: Historical evolution of energy consumption. Fuels, greenhouse gas (GHG) emissions and climate change. Impacts of climate change. Calculating GHG emissions.
- Biofuel sustainability issues. 1st, 2nd and 3rd generation biofuels and main raw materials. Competition with food crops and the preservation of ecosystems. The RED II directive (DIRECTIVE (EU) 2018/2001) and Decree-Law 84/2022 on obligations to incorporate biofuels. Greenhouse gas emissions associated with biofuels.
- Hydrogen as an energy product. Hydrogen production from fossil fuels. Renewable hydrogen: production via biomass and water dissociation. Hydrogen utilisation.
- Introduction to the basic concepts related to bioenergies. The context of the present development of bioenergies and social and environmental questions of biofuels production; Concept of biorefinary and the possibility of combining environmental remediation with energetic recovery of bioresidues. Problems related to the seasonality of the avaiability of biomasses and the storage of bioenergy; Portuguese, european and world biofuels market.
- Solid biofuels: Thermochemical processment of biomasses: combustion; pirolysis and gasification; biochar; Fisher-Tropsch process and and reforming of the "syngas" obtained from biomass gasification to produce liquid biofuels; pelletization of forestry and agricultural residues; Main unit operations and equipment.
- Liquid biofuels: Bioethanol and alcoholic fermentation; biodiesel and esterification and transesterification of vegetable oils and fats; the "green diesel" and the hydrogenation and cracking of vegetable oils; main raw materials and processing technologies; main unit operations and equipment.
- Gaseous biofuels: Biogas, biomethane and e bio-hydrogen; biochemical processing of biomasses, anaerobic digestion; technologies used in the purification of biogas; processing of agro industrial residues, municipal solid wastes and WWTP slurries by anaerobic digestion and co-digestion;
- Introduction to the electrochemical processing of residual biomasses; main raw materials and processing technologies; main unit operations and equipment.
Bibliografia Obrigatória
Neste; Renewable Diesel Handbook, 2020
Bibliografia Complementar
R. Farias; Introdução aos Biocombustíveis, 2010
D.M.Mousdale ; Biofuels- Biotechnology,Chemistry and Sustainable Development, 2008
E.E.S. Lora, O.J. Venturini; Biocombustíveis, 2012
Métodos de ensino e atividades de aprendizagem
Theoreticalclasses based on presentations given by the teacher using digital tools and documentation available to the students before the classes; Seminars for the resolution of numerical exercises and discussion of simple scientific papers and newspaper articles related to biofuels production and usage, selected and proposed by the teacher. Continuous assessment based on a single written test with a weight of 60 % in the final mark calculation, and on a simple "project basead learning" project developed by a student group during the semester with a weight of 25 % in the final mark calculation. The remaining 15 % will be attributed to other assessment elements such home works and mini tests. This 40 % of continuous work during the semester will be consider in all examination periods, coming the other 60 % from the examination test.
Tipo de avaliação
Distributed evaluation with final exam
Componentes de Avaliação
Designation |
Peso (%) |
Teste |
60,00 |
Participação presencial |
15,00 |
Trabalho escrito |
25,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Frequência das aulas |
52,50 |
Estudo autónomo |
7,50 |
Trabalho escrito |
30,00 |
Total: |
90,00 |
Obtenção de frequência
Not applied
Fórmula de cálculo da classificação final
Continuous assessment
60% test + 25% PBL work + 15% participação presencial
PBL work - project based learning group work,
Participação presencial - homework and mini-tests
Exam evaluation:
60% exam + 40% continuous assessment work OR 100% exam