Análise Matemática II
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Matemática e Informática |
Ocorrência: 2020/2021 - 2S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
TPD |
47 |
Plano Estudos 2015 |
1 |
- |
6 |
75 |
162 |
Docência - Responsabilidades
Língua de trabalho
Português
Objetivos
O objetivo é continuar a desenvolver o raciocínio matemático iniciado em Análise Matemática I aplicando-o, neste caso, a funções de mais de uma variável, para que fiquem aptos a responder às solicitações e exigências de outras unidades curriculares do seu curso. No final, os estudantes deverão ter adquirido as competências no domínio do cálculo diferencial e integral de funções de mais de uma variável real, incluindo os teoremas fundamentais do cálculo. Deverão ainda estar aptos a resolver algumas equações diferenciais que surgem em diversas aplicações à engenharia.
Resultados de aprendizagem e competências
Não aplicável
Modo de trabalho
Presencial
Programa
Funções de várias variáveis:Generalidades: revisões de geometria analítica. Domínios e gráficos. Noções Topológicas. Conceito de limite em R2: interpretação geométrica, conceitos, teoremas. Continuidade em Rn. Derivadas direccionais e derivadas parciais. Derivadas parciais de ordem superior. Diferenciabilidade. Teoremas de diferenciabilidade. Regra da Cadeia. Pontos de estacionaridade em Rn. Método dos Multiplicadores de Lagrange.
Integrais Múltiplos: Integrais duplos. Aplicações à Mecânica (massa, momentos de inércia). Interpretação do integral duplo como um volume. Mudança de variável (coordenadas polares). Integrais triplos. Mudanças de variável: coordenadas cilíndricas e coordenadas esféricas.
Equações Diferenciais: Definições. Equações diferenciais de 1aOrdem. Mudança de variável de equações Diferenciais. Equações lineares de ordem n de coeficientes constantes: completa e homogénea. Aplicações.
Bibliografia Obrigatória
Tom M. Apostol; Calculus, volume 1, Wiley, 1967. ISBN: 9780471000051
Tom M. Apostol; Calculus, volume 2, Wiley, 1969. ISBN: 978-0-471-00007-5
Acilia Azenha e Maria Amélia Jerónimo; Elementos de Cálculo Diferencial em R e Rn, McGrawHill, 1995. ISBN: 972-8298-03-X
Métodos de ensino e atividades de aprendizagem
Aulas teóricas intercalando períodos de exposição de conteúdos com exemplos de aplicação e proposta de pequenas tarefas para os estudantes para consolidação dos conhecimentos adquiridos. Aulas práticas dedicadas à resolução de exercícios propostos previamente, individualmente ou em pequenos grupo.
A avaliação será feita através de um exame final escrito ou, alternativamente por opção do estudante, realização de dois testes escritos a contribuir, cada um, com 50% da avaliação final.
Tipo de avaliação
Avaliação distribuída com exame final
Componentes de Avaliação
Designação |
Peso (%) |
Teste |
100,00 |
Total: |
100,00 |
Componentes de Ocupação
Designação |
Tempo (Horas) |
Estudo autónomo |
102,00 |
Frequência das aulas |
60,00 |
Total: |
162,00 |
Obtenção de frequência
Não aplicável
Fórmula de cálculo da classificação final
Avaliação contínua:
- 2 testes, com um peso de 50% cada;
Exame:
Caso não seja possível a realização do teste e/ou exame presencialmente, por causa da pandemia, poderá ser exigida uma prova oral a todos os estudantes que obtenham uma classificação superior ou igual a 9,5 valores. A classificação no teste e/ou examel será a classificação obtida na prova oral.