Análise Matemática I
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Matemática e Informática |
Ocorrência: 2022/2023 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
CIVN |
34 |
Plano Estudos 2019 |
1 |
- |
6 |
75 |
162 |
Docência - Responsabilidades
Língua de trabalho
Português
Objetivos
O objectivo é continuar a desenvolver o raciocínio matemático iniciado no secundário, para que fiquem aptos a responder às solicitações e exigências de outras unidades curriculares do seu curso. No final, os estudantes deverão ter adquirido as competências no domínio do cálculo diferencial e integral de funções de uma variável real, incluindo os teoremas fundamentais do cálculo.
Resultados de aprendizagem e competências
Não aplicável
Modo de trabalho
Presencial
Programa
Limites e Continuidade: Função exponencial e função logaritmo. Funções inversas da trigonometria. Noção de limite e interpretação geométrica. Continuidade e limite. Teoremas do valor intermédio e de Weierstrass.
Cálculo Diferencial: Noção de derivada. Regras de derivação. Diferenciabilidade e Continuidade. Derivadas de ordem superior. Derivadas de funções implícitas e de funções dadas na forma paramétrica. Aplicações da derivação. Extremos. Teoremas de Rolle, Lagrange e Cauchy. Regras de Cauchy e de L ́Hôpital. Introdução aos diferenciais. Fórmula de Taylor e aplicações.
Cálculo Integral: Primitivas. Cálculo integral. Integral indefinido, derivada de um integral indefinido, teorema Fundamental do Cálculo Integral, fórmula de Barrow. Integração por partes e Substituição. Integrais impróprios. Critérios de convergência. Aplicações do cálculo integral ao cálculo de áreas, volumes de sólidos de revolução e comprimento de curvas. Momentos, centros de massa e centróides.
Bibliografia Obrigatória
T. Apostol; Calculus, Vol. I, second edition, Wiley, 1967
J. Campos Ferreira; Introdução à Análise Matemática, Fundação Gulbenkian, 8a ed., 2005
Larson, Hostetler e Edwards; Cálculo, Vol. 1, 8a edição, McGraw-Hill, 2006
Cálculo Diferencial e Integral, Vol. I; N. Piskounov, Lopes da Silva Editora, 1967
C. Sarrico; Análise Matemática, Leitura e exercícios, 1a edição, Gradiva, 1997
Bibliografia Complementar
Departamento de Matemática do IST; Exercícios de Análise Matemática I e II, IST Press, 2005. ISBN: 978-989-8481-83-2
M. Ferreira e I. Amaral; Matemática, Exercícios, Primitivas, Integrais, edições sílabo, 1996
B. Demidovitch; Problemas e Exercícios de Análise Matemática, Editora Mir, 1997
Métodos de ensino e atividades de aprendizagem
Aulas teóricas intercalando períodos de exposição de conteúdos com exemplos de aplicação e proposta de pequenas tarefas para os estudantes, para consolidação dos conhecimentos adquiridos. Aulas práticas dedicadas à resolução de exercícios propostos previamente, individualmente ou em pequenos grupo.
A avaliação será feita através de um exame final escrito ou, alternativamente por opção do estudante, realização de três testes escritos a contribuir, cada um, com 33,33% da avaliação final.
Tipo de avaliação
Avaliação distribuída com exame final
Componentes de Avaliação
Designação |
Peso (%) |
Teste |
100,00 |
Total: |
100,00 |
Componentes de Ocupação
Designação |
Tempo (Horas) |
Estudo autónomo |
87,00 |
Frequência das aulas |
75,00 |
Total: |
162,00 |
Obtenção de frequência
Não aplicável
Fórmula de cálculo da classificação final
Avaliação contínua:
- 3 testes, com um peso de 33,33% cada e assiduiddade obrigatória a 80% das aulas;
Exame: