Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > LACI21015
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Signals, Systems and Simulation

Code: LACI21015     Sigla: SSS

Áreas Científicas
Classificação Área Científica
OFICIAL Controlo e Processos

Ocorrência: 2021/2022 - 1S

Ativa? Yes
Unidade Responsável: Departamento de Sistemas e Informática
Curso/CE Responsável:

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
EACI 52 Plano de Estudos 14 2 - 6 75 162

Docência - Responsabilidades

Docente Responsabilidade
João Miguel Guerreiro Dias Alves Lourenço

Docência - Horas

Theorethical and Practical : 3,00
Practical and Laboratory: 2,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 3,00
Artur Manuel Fortunato Graxinha 3,00
Practical and Laboratory Totais 4 8,00
Artur Manuel Fortunato Graxinha 4,00
José Manuel dos Santos Martins 4,00

Língua de trabalho

Portuguese

Objetivos

Develop in students the ability to:


  1. Treat and represent signals in time and frequency.

  2. Model and represent physical systems and processes.

  3. Analyze time and frequency domain systems.

  4. Analyse Systems Stability

  5. Use SW and HW tools for system modelling, simulation and analysis.

  6. Apply Fourier series and Fourier and Laplace transforms in the modeling, simulation and analysis of physical signals and systems.

  7. Use and SW's (Matlab, Simulink and Tina TI) in the development of computer simulations of systems and in problem solving.

Resultados de aprendizagem e competências

At the end of the UC the student should be able to:


  1. Treat and represent signals in time and frequency.

  2. Model and represent physical systems and processes.

  3. Analyze time and frequency domain systems.

  4. Analyse Systems Stability

  5. Use SW and HW tools for system modelling, simulation and analysis.

  6. Apply Fourier series and Fourier and Laplace transforms in the modeling, simulation and analysis of physical signals and systems.

  7. Use and SW's (Matlab, Simulink and Tina TI) in the development of computer simulations of systems and in problem solving.

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)


  • Integral and Differential Calculus, Trigonometry and Complex Numbers.

  • Circuit analysis and basic principles of mechanics dynamics.

Programa


  1. Signals: transformations, basic signs, generalized functions.

  2. Fourier Series and Fourier transform, properties, sampling theorem, aliasing.

  3. Systems: representation, properties. Laplace transform, properties.

  4. SLIT: representation, transfer function, poles and zeros, block diagrams.

  5. Mathematical modeling of systems.

  6. Time response, dominant poles, stationary error. Stability: Routh-Hurwitz method.

  7. Frequency response, Bode plots, asymptotic approximations, minimum phase systems.

Bibliografia Obrigatória

Rogério Largo; Sinai e Sistemas - Apontamentos
Docentes da disciplina; Listas de Exercícios (Para uso nas aulas TP)
Alan V Oppenheim , Alan S. Willsky , with S. Hamid ; Signals and Systems, Pearson, 2013. ISBN: 1292025905
Katsuhiko Ogata ; Engenharia de Controle Moderno, Pearson, 2011. ISBN: 9788576058106
Norman S. Nise; Engenharia de Sistemas de Controle, LTC, 2017. ISBN: 9788521634355

Bibliografia Complementar

M.J. Roberts ; Signals and Systems: Analysis Using Transform Methods & MATLAB, McGraw-Hill Education, 2017. ISBN: 0078028124
Isabel Lourtie; Sinais e Sistemas -2ª ed, Escolar Editora, 2007. ISBN: 9789725922156
Charles L. Phillips, John Parr, Eve Riskin; Signals, Systems, and Transforms - 5th edition, Pearson, 2013. ISBN: 0133506479

Métodos de ensino e atividades de aprendizagem


  1. Theoretical presentation supported with practical examples of application associated with the industrial environment and other demonstrations supported by SW's.

  2. Practical, through problem solving and exercises representative of the theoretical component and written assessment of the UC.

  3. Laboratory through:


3.1 Computer simulation of systems.

3.2 Problem solving.

3.3 Analysis of case studies and other examples.

Software

Matlab/Simulink
LabVIEW
Tina/TI

Tipo de avaliação

Distributed evaluation without final exam

Componentes de Avaliação

Designation Peso (%)
Teste 70,00
Trabalho laboratorial 30,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Frequência das aulas 75,00
Estudo autónomo 59,00
Trabalho escrito 4,00
Trabalho laboratorial 24,00
Total: 162,00

Obtenção de frequência

The frequency is achieved through:
Carrying out 2 written tests or an exam and the planned laboratory work


  • Test 1 and Test 2 with a minimum score of 8.0 values.

  • The Mean of Test1 and Test2 has a minimum rating greater than or equal to 9.5 values (≥9.5 values) on a scale between 0-20.

  • The exam grade has a minimum grade greater than or equal to 9.5 points (≥9.5 points) on a scale between 0-20.

  • Carrying out all laboratory work with a minimum rating (in each laboratory work) greater than or equal to 9.5 values (≥9.5 values) on a scale between 0-20.

Fórmula de cálculo da classificação final

The final classification is obtained as follows:
CF=0.7*T+0.3*L

where,


  • T is the mean of the two tests (≥9.5 val.) or the exam grade (≥9.5 val.). Grades greater than or equal to 17 are defended in an oral exam.

  • L is the average of the grades of all laboratory work (L≥9.5)

Melhoria de classificação

The Improvement of the grade can be obtained through the accomplishment of the exams foreseen in the regulations of ESTSetúbal.
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 21:01:08