Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > MEB07
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Information Visualization

Code: MEB07     Sigla: VI     Level: 1

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2022/2023 - 2S

Ativa? Yes
Página Web: https://portal.ips.pt/ests/pt/ucurr_adm.ficha_uc_preview?pv_ocorrencia_id=557070&pv_ficha_ocorr_id=5546
Unidade Responsável: Departamento de Sistemas e Informática
Curso/CE Responsável:

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
MEB 11 Plano Oficial do ano letivo 2021 1 - 6 60 162

Docência - Responsabilidades

Docente Responsabilidade
Miguel Angel Guevara López

Docência - Horas

Theorethical and Practical : 1,00
Practical and Laboratory: 2,00
Orientação Tutorial: 1,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 1,00
Miguel Angel Guevara López 1,00
Practical and Laboratory Totais 1 2,00
Miguel Angel Guevara López 2,00
Orientação Tutorial Totais 1 1,00
Miguel Angel Guevara López 1,00

Língua de trabalho

Portuguese - Suitable for English-speaking students

Objetivos


  1. To introduce students to the fundamental problems, concepts, and approaches in the design and analysis of data visualization systems.

  2. To familiarize students with the stages of the visualization pipeline, including data modeling, mapping data attributes to graphical attributes, perceptual issues, existing visualization paradigms, techniques, and tools, and evaluating the effectiveness of visualizations for specific data, task, and user types.

  3. To enable students to develop complex / advanced interactive information visualization systems.


 

Resultados de aprendizagem e competências

After a brief introduction of the object, methods, and reference model (aka pipeline) of Information Visualization, the course will provide the student with theoretical knowledge about human visual perception and its practical use applied to information visualization systems, particularly on how to enhance the capabilities of human visual perception avoiding and circumventing its limitations. Based on this theoretical and practical knowledge, the reference model of Information Visualization is deepened and the essential knowledge on interaction with visualization systems, the types of data and representations for these data is introduced, addressing with particular care multidimensional data, text, and time variables. Finally, main information visualization techniques for virtual and augmented reality environments are introduced through familiarization with the main development tools.

Modo de trabalho

Presencial

Programa

1.    Introduction to Information Visualization
1.1.    Definition
1.2.    Basic concepts
1.3.    Computers vs. Humans
1.4.    Constraints
2.    Data Abstraction
2.1.    Data types
2.2.    Dataset types
2.3.    Attribute types
2.4.    Semantics
3.    Task Abstraction
3.1.    Actions
3.1.1.    Analyze
3.1.2.    Produce
3.1.3.    Search
3.1.4.    Query
3.2.    Targets
3.3.    Analyzing and Deriving
4.    Analysis – Levels for Validation
4.1.    Levels of Design
4.2.    Angles of Strike
4.3.    Validation Approaches
4.3.1.    Domain
4.3.2.    Abstraction
4.3.3.    Idiom
4.3.4.    Algorithm
4.3.5.    Mismatches
4.4.    Validation Examples
5.    Marks and Channels
5.1.    Defining Marks and Channels
5.1.1.    Channel Types
5.1.2.    Mark Types
5.2.    Using Marks and Channels
5.3.    Channels Effectiveness
6.    Rules of Thumb
6.1.    2D
6.2.    3D
6.3.    Eyes vs Memory
6.4.    Resolution vs Immersion
6.5.    Overview and Detail
6.6.    Responsiveness Capacity
7.    Arrange Tables
7.1.    Arrange by Keys and Values
7.2.    Separate, Order, and Align
7.3.    Spatial Axis Orientation
7.4.    Spatial Layout Density
8.    Arrange Spatial Data
8.1.    Geometry
8.2.    Scalar Fields
8.3.    Vector Fields
8.4.    Tensor Fields
9.    Arrange Networks and Trees
9.1.    Connection – Link Marks
9.2.    Matrix Views
9.3.    Hierarchy Marks
10.    Map Color and Other Channels
10.1.    Color Theory
10.2.    Colormaps
10.3.    Other Channels
11.    Manipulate Views
11.1.    Change View over Time
11.2.    Select Elements
11.3.    Changing Viewpoint
11.4.    Reducing Attributes
12.    Facet into Multiple View
12.1.    Juxtapose and Coordinate Views
12.2.    Partition into Views
12.3.    Superimpose layers
13.    Reduce Items and Attributes
13.1.    Filter
13.2.    Aggregate
14.    Embed: Focus + Context
14.1.    Elide
14.2.    Superimpose
14.3.    Distort
14.4.    Costs and Benefits: Distortion
15.    Applications: Case Studies

Bibliografia Obrigatória

Collin Ware ; Information Visualization: PERCEPTION FOR DESIGN. Fourth Edition, Morgan Kaufmann, 2021
Robert Grant; Data Visualization Charts, Maps, and Interactive Graphics, Chapman and Hall/CRC, 2018. ISBN: 9781138553590
Claus O. Wilke; Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures, O’Reilly, 2019. ISBN: 9781492031086

Bibliografia Complementar

Mario Döbler, Tim Großmann ; Data Visualization with Python. Second Edition, Packt Publishing, 2020
Ossama Embarak ; Data Analysis and Visualization Using Python: Analyze Data to Create Visualizations for BI Systems, APRESS, 2018. ISBN: 978-1-4842-4108-0
T. Munzner; Visualization Analysis & Design: Abstractions, Principles, and Methods , CRC Press , 2014. ISBN: 978-1-4665-0893-4

Métodos de ensino e atividades de aprendizagem

Teaching will have 3 major components:

  • Theoretical-practical classes - partially expository and with intensive use of supervised resolution of exercises, analysis of study cases and two seminars on specific topics, which will take place entirely in an online way (remote learning).
  • Laboratory classes - for supervised execution and individual assessment of practical work in a computing environment for personal computers, internet, and mobile devices.
  • Tutorial guidance - for personalized monitoring of the execution of distance projects.

Document files will be made available with the subject of laboratory exercises to be executed autonomously (asynchronous regime), but with monitoring by videoconference at the established time and, the use of synchronous classes (by video conference) for clarification of doubts and individual monitoring.

Software

Anaconda Distribution (Linguagem de Programação Python + Módulos de Análise e Visualização de Dados)
IDE: Visual Studio Code

Tipo de avaliação

Distributed evaluation without final exam

Componentes de Avaliação

Designation Peso (%)
Apresentação/discussão de um trabalho científico 30,00
Trabalho laboratorial 50,00
Teste 20,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Apresentação/discussão de um trabalho científico 2,00
Elaboração de projeto 40,00
Estudo autónomo 30,00
Trabalho de investigação 30,00
Trabalho laboratorial 30,00
Frequência das aulas 60,00
Total: 192,00

Obtenção de frequência

The evaluation will cover all 3 components, namely:

  • - Through two seminars for which students will have to prepare their presentations autonomously. Theoretical knowledge and the ability to apply it to specific cases will be evaluated.
  • Through a selection of the best laboratories, the accompanied execution skills will be evaluated.
  • Through the execution of a project (individual or up to 3 students) the capacity for autonomous work and execution will be evaluated.

Fórmula de cálculo da classificação final

Final evaluation will be:
40% Project + 20% Laboratories + 15% (Seminar 1) + 15% (Seminar 2) + 20% Test
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-12-14 às 16:49:35