Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > TPSI05
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Elements of Mathtematics I

Code: TPSI05     Sigla: EM I

Áreas Científicas
Classificação Área Científica
CNAEF Mathematics

Ocorrência: 2021/2022 - 1S

Ativa? Yes
Página Web: https://moodle.ips.pt/2122/course/view.php?id=650
Unidade Responsável: Departamento de Matemática
Curso/CE Responsável: Professional Technical Higher Education Courses in Technologies and Programming of Information Systems - ESTSetúbal

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
IPE 1 Plano de Estudos 2016/2017 1 - 6 60 162
TSPTB 27 Plano de Estudos_2015_16 1 - 6 60 162
TSPTSI 36 Plano de Estudos_2015_16 1 - 6 60 162

Docência - Horas

Theorethical and Practical : 4,00
Type Docente Turmas Horas
Theorethical and Practical Totais 2 8,00
Ricardo José de Oliveira Issa 4,00
Vanda Isabel Pereira Rosado Silva 4,00
Mais informaçõesA ficha foi alterada no dia 2021-10-27.

Campos alterados: Métodos de ensino e atividades de aprendizagem

Língua de trabalho

Portuguese

Objetivos

The general objective of this course unit is to provide students with the basic mathematical knowledge required in the professional training of a top professional technician.

Resultados de aprendizagem e competências

By the end of term time, students should be able to:


  1. Identify the properties of a real function.

  2. Characterise inverse trigonometric functions.

  3. Interpret the notion of limit of a function and calculate the limit of a function.

  4. Analise the function continuity and apply the theorems of Bolzano and Weierstrass.

  5. Interpret the concept of derivative of a function and calculate the derivative of a function at a point by definition.

  6. Analise the differentiability of a function in an open interval and apply the derivative rules to calculate the derivative function.

  7. Apply the theorems of Rolle, Lagrange and Cauchy.

  8. Apply the Taylor's theorem to a k-times differentiable function.

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)

Previous mathematical knowledge acquired through to secondary school, in particular fractional number and polynomials operations; equation and inequality solving; elementary properties of a real function.

Programa

1. Real Functions of Real Variable
1.1. Introduction to mathematical language and logical operations.
1.2. Generalities about real functions of real variable.
1.3. Study of inverse trigonometric functions.
1.4. Notion of limit; lateral boundaries; properties and operations.
1.5. Continuous functions, properties and continuity extension.
1.6. Fundamental theorems of continuous functions.

2. Differential Calculus in R
2.1. Notion of derivative of a function: definition and interpretations in geometric and physical terms; equations of the lines tangent and normal to the graph of a function at a point.
2.2. Lateral derivatives; differentiability and their properties; derivation rules; derived from the compound function and the inverse function; derived from inverse trigonometric functions; notion of differential.
2.3. Fundamental theorems of differentiable functions.
2.4. Derivatives of higher order; Taylor and Maclaurin formulas (Lagrange remnants). Application to the study of monotony, extremes and concavities.

Bibliografia Obrigatória

Campos Ferreira, J.; Introdução à Análise Matemática - 12ª edição, Fundação Calouste Gulbenkian, 2018. ISBN: 978-972-31-1388-4

Bibliografia Complementar

Larson, R., Hostetler, R. P., Edwards, B. H.; Cálculo – Vol. I – 8ª edição, McGraw Hill, 2006
Thomas, G.; Cálculo, Vol. 1 - 11ª Edição, Pearson, 2009

Métodos de ensino e atividades de aprendizagem

During classes, the fundamental concepts on the different subjects of the course unit are firstly presented, illustrated by some application examples. Afterwards, students will carry out exercises to consolidate knowledge on the covered topics individually or through collaborative working group, under the guidance of the teacher.

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Exame 0,00
Teste 100,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 102,00
Frequência das aulas 60,00
Total: 162,00

Obtenção de frequência

The approval in this UC (curricular unit) can be obtained through two assessment processes: Continuous Evaluation or Exam Evaluation.

CONTINUOUS EVALUATION
The Continuous Evaluation presupposes the accomplishment of 4 summative tests and a compulsory attendance of at least 75% of the classes.
Assigning by MT1, MT2, MT3 and MT4 the grades (from zero to 5 values, rounded to tenths) obtained in each of the 4 summative tests, the final classification CF (rounded to units) will be the plain sum of the four grades.

The approval conditions are as follows:


  1. If CF is greater than or equal to 10 and less than 18, the student passes on with a final grade equal to CF, provided that the classification in any of the sums MT1+MT2 and MT3+MT4 is greater than or equal to 3.5 values.


  2. If a student fails the approval conditions referred in point 1, the student can recover the lowest grade obtained in MT1+MT2 and MT3+MT4 by performing a recovery test on the date of the normal period exam, provided that MT1+MT2 or MT3+MT4 is greater than or equal to 3.5 values. 



EVALUATION BY EXAM
Students who have not obtained approval for Continuous Assessment may take an exam, being approved as long as they obtain a grade of 10 or higher.

NOTE: In any of the evaluation processes, whenever the final classification is greater than or equal to 18 values, the student must carried out an oral test, obtaining as a final grade the average of the classifications of the written test and of the said oral test . If the student does not attend the oral test, the final classification will be 17 values.

Fórmula de cálculo da classificação final

CF = MT1 + MT2 + MT3 + MT4
or
Exam evaluation

Avaliação especial (TE, DA, ...)

Working students, high-level athletes, association leaders and students under the Religious Freedom Law must address, until the second academic week of the semester, to the head of the Curricular Unit to present their pertinent specificities, in accordance with the terms of the respective diplomas under penalty of failure to enforce them for lack of objective conditions.

Melhoria de classificação

In this course unit passed students of this academic year may only apply to their improvement classification in the supplementary period exam.

Observações


  • Each summative test shall be of 60 minutes, the recovery test of 90 minutes and each exam of 150 minutes.

  • To perform the recovery test and/or exams, an identification document with photo has to be presented.

  • During assessment tests and examinatiom, only the enquiry form given by the teacher is allowed; handling or displaying any electronic equipment is prohibited.

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-12-22 às 21:37:39