Air conditioning
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Termodinâmca Aplicada |
Ocorrência: 2022/2023 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
LTE |
16 |
Plano de Estudos |
3 |
- |
6 |
75 |
162 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
Keep in mind and know how to consult the legislation, related to energy systems for air conditioning in buildings. Know the comfort conditions and the parameters that influence them. Identify the various types of HVAC systems, analyze their specificities and applications. Calculate the fundamental elements of an installation and choose the main air conditioning equipment. Know the fundamentals of maintenance, operation and commissioning of equipments.
Resultados de aprendizagem e competências
At the end of the course, students should be able to:
- identify the limits of the conditions of human comfort;
- find in the legislation the information they need regarding requirements for air conditioning equipment and systems, as well as the functions to be performed by each of the various recognised technicians;
- choosing and substantiating a choice of equipment or system for an installation;
- know how the systems and equipment operate;
- Design the main elements of a system.
Modo de trabalho
Presencial
Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)
As a prerequisite, it is recommended that the Students have successfully completed the disciplines of the scientific areas of Mathematics and Applied Thermodynamics of previous years, namely: Matemática I e II, Termodinâmica, Mecânica dos Fluidos, Aquecimento e Energia Térmica Renovável, Transmissão de Calor e Massa, Manutenção e Máquinas Elétricas.
Programa
1. Introduction to thermal comfort and the need for air conditioningConditions of thermal comfort.
Portuguese Legislation and Standards.
Estimated Predicted Mean Vote (PVM) and PPD (Predicted Percentage Dissastisfied).
Indoor Air Quality.
Properties of moist air, considering it as a mixture of perfect gases.
Classification and typology of terminal air conditioning systems.
Classification and typology of thermal production systems.
Typical process of design.
2. Psychometric diagram, Humid Air processesProperties of ideal gas mixtures.
Heating/ Cooling.
Cooling with Dehumidification.
Humidification.
Evaporative cooling.
Heating with dehumidification.
Sensitive and latent recovery.
Latent heat and sensitive heat.
Sensitive Heat Factor.
3. Air conditioning systemsDefinition of Air Conditioning System.
Classification and typology of air conditioning systems .
Different types of central and terminal systems.
Heating with thermal production through boiler.
Operation of a refrigeration installation.
COP and EER.
Cold storage fluids.
Air conditioning by circulation of refrigerant.
Split and multisplit direct expansion units.
Autonomous Conditioning Units.
Air conditioning by water circulation.
4. Centralized thermal production equipmentChilled water producer groups (chillers): centralised production units. Selection and operating parameters. Units with partial and total heat recovery. Refrigeration circuit of the units mentioned. Variation of the efficiency of the units with the temperature regime. Compact air conditioning units. Energy recovery systems. Accumulation systems.
5. Terminal air conditioning equipmentAir Handling Units (AHU): main modules and their characteristics. Speed of passage in the batteries and loss of charge in the units. Direct expansion coverage units (roof-tops). Terminal units: convectors, fan coil units, cooled ceilings and induction units.
Single and double duct systems. VAV systems. Fan coil systems. Two and four tube systems. VRF system.
Systems with cooled ceilings and induction units.
New air flows in an installation. Outdoor air quality and indoor air quality conditions. Method of ventilation rate and air quality. Sensory evaluation.
6. Aerobic and hydraulic networksTypical hydraulic networks of interconnection between terminal units and chillers. Networks with direct and inverse return. Regulating valves. Interconnection with cooling towers and AHU. The equilibrium of the water flow of the primary circuit with the secondary circuit. Association of chillers in series and in parallel. Typical speeds in water networks.
Interaction between the network, pump and chiller. Some of the possible problems due to poor balance of a piping network.
Typology of most used pipeline networks.
Design of aerobic pipe networks.
Typical speeds in air pipe networks.
Some of the possible problems due to poor balance of an aerobic network.
7. Methods for Defining SystemsAttribute weighting and function weighting.
Bibliografia Obrigatória
Luís Roriz; Climatização, Concepção, instalação e condução de sistemas, Edições Orion, 2006
Luis Roriz; Climatização em Edifícios – Envolvente e Comportamento Térmico, Edções Orion
ASHRAE; ASHRAE Handbook – Fundamentals (SI)
ASHRAE ; ASHRAE HandBook, Systems and Equipments, 2012
Norma; ISO 7730
Norma; EN 15251
Norma; ASHRAE 55
Norma; EN 13779
Norma; EN 779
Norma; ISO 16890
Norma; ASHRAE 62.1
Bibliografia Complementar
Luiz Roriz, Fernando Lourenço; Sistemas Hidráulicos - Aquecimento Ambiente e Águas Sanitárias
Métodos de ensino e atividades de aprendizagem
TP class of the participatory expositive type. Some TP classes will be used for discussion of real cases. In the laboratory classes there will be follow-up work, thematic work and the realization of laboratory reports.
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Participação presencial |
5,00 |
Teste |
40,00 |
Trabalho escrito |
30,00 |
Trabalho laboratorial |
25,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Estudo autónomo |
36,00 |
Frequência das aulas |
54,00 |
Trabalho escrito |
60,00 |
Trabalho laboratorial |
12,00 |
Total: |
162,00 |
Obtenção de frequência
Minimum attendance: 80%
Fórmula de cálculo da classificação final
CF = 0,4 x MNT + 0,3 x TR + 0,25 x LAB + 0,05 x ASS
CF = Final Classification
MNT - 2 test grade average
TR - Group or individual work with presentation
LAB - Average grade of laboratory tests
ASS - Note of attendance