Data Analysis
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Informática |
Ocorrência: 2022/2023 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
MEEC |
10 |
Plano de Estudos_2020 |
1 |
- |
7,5 |
75 |
202,5 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
At the end of this course the student should be able to:
• Identify the challenges and requirements for persisting and analyse big data
• To know the development phases of BI/Analytics projects
• Modelling and specifying a Datawharehouse
• Understand the best practices for coding the ETL process
• Conduct analytical queries to a multidimensional Datawharehouse through SQL OLAP extensions
• Evaluate, select and configure OLAP systems
• Differentiate and select several datamining algorithm classes, and their usage assumptions
• Develop visualizations for data and respective analyses results reporting, over existing platforms
Resultados de aprendizagem e competências
- Know how to guide a BI project
- Establish data models
- Properly select and apply algorithms for the problem
Modo de trabalho
B-learning
Programa
1. OLTP, OLAP and big data
2. Frameworks for BI project development
3. Dimensional data Modelling
4. Physical design of Datawharehouses
• New paradigms for distributed data persistence and processing
5. The ETL process
• Phases and Technologies
6. Analytical Query
• SQL OLAP extensions
• OLAP systems vs Emergent technologies and tools
7. Datamining
• Common applications
• Distinctions among supervised methods vs non-supervised
• Models evaluation
• Tools
8. Reporting and Visualization
• Technologies for development and configuring interactive visualization elements
9. BI and NoSQL sources
• Alternative data representations
• The complementarity and integration of hybrid systems
10. Module II: An Application Case: Web analytics
Bibliografia Obrigatória
Ralph Kimball e Margy Ross; The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, Wiley, 2002
Foster Provost, Tom Fawcett; Data Science for Business: What you need to know about data mining and data-analytic thinking (, O'Reilly Media, 2013. ISBN: 1449361323
Métodos de ensino e atividades de aprendizagem
Theoretical presentation of concepts. Analysis of case studies. Practical application of concepts.
Classes will follow a calendar initially presented to students containing in-person and remote classes and deliverable tasks/milestones. Remote classes explore the use of technologies involved in a digital environment, this and its methods, in selected subjects, in a more pedagogically productive way. The face-to-face classes maintain exposition, exploration of examples/case studies and exercises to introduce and frame the subjects. The number of classes in the remote modality is less than 50% of the total classes.
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Trabalho escrito |
50,00 |
Exame |
50,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Elaboração de projeto |
20,00 |
Trabalho escrito |
10,00 |
Trabalho laboratorial |
32,00 |
Estudo autónomo |
80,00 |
Frequência das aulas |
60,00 |
Total: |
202,00 |
Obtenção de frequência
Attendance at labs, seminar and project evaluation presentations
Fórmula de cálculo da classificação final
Module I (40%) = 20% Labs (min9)+ 30% Seminar (min9) + 50% test (min9)
Module II (60%) = 30% Labs (min9)+ 30% projet (min9)+ 40% test (min9)
Exame: 50% Projet (min9) + 50% Exam (min9)