Controlo na Indústria
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Controlo e Processos |
Ocorrência: 2022/2023 - 2S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
MP |
26 |
Plano de Estudos |
1 |
- |
6 |
0 |
162 |
Docência - Responsabilidades
Língua de trabalho
Português
Objetivos
Desenvolver nos alunos a capacidade de:
- Compreender as diferenças entre os sistemas em anel aberto e fechado, modelar e identificar os vários componentes que podem constituir uma cadeia de controlo.
- Analisar e caracterizar sistemas, com base na sua resposta no tempo e na frequência.
- Compreender as noções de estabilidade absoluta/relativa.
- Analisar sistemas e dimensionar controladores, utilizando o método de projecto baseado no Lugar Geométrico das raízes, bem como identificar o método mais adequado face às especificações pretendidas para cada sistema.
- Compreender as acções básicas de controlo: Proporcional (P), Integral (I) e Derivativa (D) e a sua influência no desempenho e estabilidade de uma cadeia de controlo.
- Saber usar o programa Matlab/Simulink para analisar e dimensionar sistemas de controlo.
Resultados de aprendizagem e competências
No final da UC o aluno deverá ser capaz de:
- Modelar e representar sistemas físicos e processos a partir das leis da fisica usando equações diferenciais.
- Representar e simplificar sistemas usando diagramas de blocos.
- Dedução da função de transferência de um sistema a partir do seu diagrama de blocos.
- Utilização da transformada de laplace directa e inversa para representação matemática de sistemas no domínio do tempo e da frequência.
- Analisar e representar sistemas no domínio do tempo e da frequência.
- Analisar erros em regime estacionário.
- Analisar a Estabilidade de sistemas (absoluta, crítica e instabilidade).
- Utilizar ferramentas de SW (Matlab, Simulink e Tina TI) para a modelação, simulação computacional e análise de sistemas no domínio do tempo e da freqência.
- Utilizar compensadores de avanço e atraso para resolver aspectos da resposta transitória e erro estacionário de sistemas.
- Projetar controladores clássicoss: As ações básicas de controlo - Proporcional (P), Integral (I) e Derivativo (D), Controlador PID.
- Projetar controladores PID usando os métodos de Ziegler-Nichols (ganho crítico e curva de reação).
Modo de trabalho
Presencial
Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)
- Trigonometria e Números Complexos, Cálculo Integral e Diferencial, Transformadas de Laplace.
- Análise de circuitos com componentes passivos e amplificadores operacionais.
Programa
Aulas T/TP1 – Introdução aos sistemas de controlo. Conceitos básicos de controlo: processos; variáveis envolvidas; perturbações e ruído; controlo feedforward; controlo de realimentação; diagrama da cadeia de controlo.
2 - Modelação e representação de sistemas: Equações diferenciais, transformada de Laplace, função de transferência. Polos e zeros. Diagramas de blocos.
3 - Resposta temporal de sistemas de 1ª e 2ª ordem. Caracterização da resposta. Polos dominantes. Erro em regime estacionário.
4 - Estabilidade: Noção de estabilidade. Estabilidade absoluta e relativa. Método de Routh-Hurwitz.
5 – Diagrama do Lugar Geométrico das Raízes (LGR) ou (Root-Locus): Condição de módulo e condição de argumento. Regras para a construção do diagrama do LGR para ganho positivo. Root-locus em função de qualquer parâmetro.
6 - Projeto de compensadores por avanço e atraso de fase com base no LGR.
7 – Resposta no domínio da frequência: Diagramas de Bode, aproximação assimptótica, curvas exatas. Sistemas de fase mínima. Estabilidade relativa, margem de Ganho e de Fase, robustez. Relações entre resposta temporal e resposta em frequência.
8 – Projeto de controladores clássicos e compensadores: As ações básicas de controlo - Proporcional (P), Integral (I) e Derivativo (D). O controlador PID. Projeto de controladores PID: métodos de Ziegler-Nichols (ganho crítico e curva de reação). Reset-windup: consequências e soluções.
9 - Método de síntonia de PID SIMC (Skogestad Internal Model Cointroller)
Aulas Laboratório:
Lab1. Modelação e análise temporal
Lab2. Lugar geométrico das raízes
Lab3. Controlo antecipativo
Lab4. Controlo do erro estacionário
Lab5. PID ATV
Bibliografia Obrigatória
Katsuhiko Ogata; Engenharia de Controle Moderno - 5ª ed, Pearson, 2010. ISBN: 978-8576058106
Norman S. Nise; Engenharia de Sistemas de Controle - 7ª Ed, LTC - Livros Tecnicos e Cientificos Editora, 2017. ISBN: 9788521634355
Docentes da disciplina; Acetatos da disciplina disponíveis na Página da Disciplina do Moodle
Docentes da disciplina; Guias dos Laboratórios (Disponibilizados no Moodle)
Métodos de ensino e atividades de aprendizagem
- Expositivo Teórico suportado com exemplos práticos de aplicação associados ao meio industrial e outras demonstrações suportadas por SW's.
- Prático, através da resolução de problemas e exercícios representativos da componente teórica e da avaliação escrita da UC.
- Laboratorial através de:
- Simulação computacional de sistemas.
- Resolução de problemáticas.
- Análise de casos práticos e outros exemplos.
Software
Matlab/Simulink
Tina/TI
Tipo de avaliação
Avaliação distribuída com exame final
Componentes de Avaliação
Designação |
Peso (%) |
Exame |
70,00 |
Trabalho laboratorial |
30,00 |
Total: |
100,00 |
Componentes de Ocupação
Designação |
Tempo (Horas) |
Estudo autónomo |
98,00 |
Frequência das aulas |
40,00 |
Trabalho escrito |
4,00 |
Trabalho laboratorial |
20,00 |
Total: |
162,00 |
Obtenção de frequência
A obtenção da frequência é conseguida através de:
- Realização de 2 testes escritos ou exame e dos trabalhos laboratoriais previstos
- Teste 1 e Teste 2 com nota mínima de 8.0 Valores.
- A Média dos Teste1 e Teste2 tem classificação mínima maior ou igual a 9.5 valores (>=9,5 valores) numa escala entre 0-20.
- A classificação do Exame tem classificação mínima maior ou igual a 9.5 valores (>=9,5 valores) numa escala entre 0-20.
- Realização de todos os trabalhos de laboratorial com classificação mínima (em cada trabalho de laboratório) maior ou igual a 9.5 valores (>=9,5 valores) numa escala entre 0-20.
Fórmula de cálculo da classificação final
- Considerando T com a média dos dois testes (>=9.5 val.) ou a nota de exame (>=9.5 val.). As Notas superiores ou iguais a 17 são defendidas em prova oral.
- Considerando L como a média de todos os trabalhos laboratoriais (L>=9.5)
A classificação final é obtida da seguinte forma: CF=0.7*T+0.3*L
Provas e trabalhos especiais
Nada a acrescentar ao que foi apresentado.
Trabalho de estágio/projeto
Nada a acrescentar aos trabalhos de laboratório apresentados.
Avaliação especial (TE, DA, ...)
Nada a acrescentar além do previsto nos regulamentos da ESTSetúbal.
Melhoria de classificação
A Melhoria da classificação pode ser obtida através da realização dos exames previstos nos regulamentos da ESTSetúbal.