Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > BINF018
Autenticação




Esqueceu-se da senha?

Programming Languages II

Code: BINF018     Sigla: LPII

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2019/2020 - 1S

Ativa? Yes
Unidade Responsável: Matemática e Informática
Curso/CE Responsável: Undergraduate in Bioinformatics

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
BINF 12 Study Plan 2 - 5 67,5 135

Docência - Responsabilidades

Docente Responsabilidade
António Leonardo Gonçalves

Docência - Horas

Theorethical and Practical : 2,00
Practical and Laboratory: 2,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 2,00
António Leonardo Gonçalves 2,00
Practical and Laboratory Totais 1 2,00
António Leonardo Gonçalves 2,00

Língua de trabalho

Portuguese

Objetivos





The UC aims to understand the notion of algorithms as the formalization of the solution to a well- determined problem in a sequence of elementary actions. To be able to analyse a given algorithm and predict the outcome of its implementation. To be able to draw in a natural language algorithms and pseudo-code.


Understanding computer programming as a way of describing algorithms in a formal language capable of being executed on a common use computer. To know the basic principles of programming: variables; basic types; expressions and assigning values to variables; decision instruction; cycle instructions; lists, and arrays. Understanding the traditional development cycle of software: design, programming and testing. Apply knowledge of these basic principles to an appropriated Python programming language. Be able to translate an algorithm given in a complete programing language, such as Python, Perl, to be able to solve a given problem making your design, programming and testing.





Resultados de aprendizagem e competências





The UC aims to understand the notion of algorithms as the formalization of the solution to a well- determined problem in a sequence of elementary actions. To be able to analyse a given algorithm and predict the outcome of its implementation. To be able to draw in a natural language algorithms and pseudo-code.


Understanding computer programming as a way of describing algorithms in a formal language capable of being executed on a common use computer. To know the basic principles of programming: variables; basic types; expressions and assigning values to variables; decision instruction; cycle instructions; lists, and arrays. Understanding the traditional development cycle of software: design, programming and testing. Apply knowledge of these basic principles to an appropriated Python programming language. Be able to translate an algorithm given in a complete programing language, such as Python, Perl, to be able to solve a given problem making your design, programming and testing.





Modo de trabalho

Presencial

Programa





•The Role of Algorithms in Computing
oAlgorithms
oAlgorithms as a technology
•Elements of programming languages
oVariables, strings, functions and lists; Statements and expressions oFunctions


oBranching and decisions
oNested structures
oRepetitions
oModules and Packages
oConditions, Arrays, Hashes and Loops •classical algorithms


osearch algorithms
oSorting algorithms
•File Handling
•Subroutines, References and Complex Data Structures •Modules and Packages





Bibliografia Obrigatória

João Pavão Martins; Programação em Python , IST press., 2015

Bibliografia Complementar

Allen Downey; Think Python, Green Tea Press,, 2018

Métodos de ensino e atividades de aprendizagem









 weekly lecture to expose the concepts and demonstrate their application with snippets and scripts in order to familiarize students with the languages.
weekly hands-on class organized so that students will develop on their own the appropriate code to obtain a number of functional scripts per class. If the students fail to develop the required code during the class they will have the opportunity to finish it as homework assignment and turn it in on the following class.









Tipo de avaliação

Distributed evaluation without final exam

Componentes de Avaliação

Designation Peso (%)
Teste 50,00
Trabalho laboratorial 50,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 50,00
Trabalho laboratorial 50,00
Total: 100,00

Obtenção de frequência

Avaliação continua:

  1. TS - Teste Semanal no Moodle: realização de   alguns mini-teste com a duração de 20m às 12h  às 6ºf;
    1. Datas dos testes em maio e junho 2020:  8 de maio; 22 de maio e 5 de junho.
  2. PL- Projecto Laboratorial  grupos de 3 alunos com discussão individual.

   Nota final:  (média dos 5 melhores TS) * 50 % + PL * 50%

   Critério de passagem:  

  1. média dos 5 melhores TS >= 8.5 Valores;
  2. PL >= 8.5 valores;
  3. Notas final >= 9.5 valores.

Avaliação por exame:

  1. Ex - Exame;
  2. PL- Projecto Laboratorial  grupos de 3 alunos com discussão individual.

    Nota final:  Ex * 50 % + PL * 50%

    Critério de passagem:  

  1. Ex >= 8.5 Valores;
  2. PL >= 8.5 valores;
  3. Notas final >= 9.5 valores.

Fórmula de cálculo da classificação final

Avaliação continua:
Nota final:
  (média dos 5 melhores TS) * 50 % + PL * 50%


Avaliação por exame:

Nota final:  Ex * 50 % + PL * 50%
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 18:47:26