Laboratory II
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Química |
Ocorrência: 2021/2022 - 2S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
BIOT |
60 |
Study Plan |
1 |
- |
5 |
60 |
135 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
A set of objectives for each laboratory session has been included in the Laboratory Manual. The purpose of these objectives is to guide the student in understanding of each method and to help the student to prepare for each laboratory session. After completed the course, students should have acquired the following competencies:
- Proficiency at handling chemicals and using laboratory equipment;
- Understanding of the practice of classic titration;
- Writing skills using scientific prose.
Resultados de aprendizagem e competências
The practical instruction has a double objective: to strengthen knowledge obtained in the lecture portion and confront the student with experimental techniques related with organic chemistry and analytical chemistry. The laboratory sessions have been designed with the objective that the student correlates many of the concepts studied in lecture, convincing him or her in this way that the knowledge obtained throughout the course can be applied to optimize processes and chemical transformations, whose transcendence goes beyond mere academic interest.
Laboratory sessions enable students to become familiar with experimental techniques often used in analytical chemistry and organic chemistry, including the use of instruments, observation of phenomena and achieving results. In addition, the student must learn to process the data and understand the degree of precision and accuracy in measurements made by the analysis and estimation of errors. This period of learning the methodology and analysis of scientific results is one of the most important skil s for an experimental course, such as Biotechnology, allowing students an overview of the entire course.
Modo de trabalho
Presencial
Programa
1. Fundamentals of Analytical Chemistry and laboratory. 2. Acid-Base Titration. 3. Potentiometric titration. 4. Precipitation Titration. 5. Complexometric titration. 6. Organic chemistry: identification of functional groups through chemical reactions. 7. Organic chemistry: nucleophilic substitution SN1. 8. Organic chemistry: condensation polymerization and addition polymerization.
Bibliografia Obrigatória
Raymond Chang; Chemistry, Williams College, 8.th Edition, 2005
D.A. Skoog, D.M. West, F. J. Holler and S. R. Crouch; Analytical Chemistry: An Introduction, Saunders College Publishing, 7.th Edition, 1999
D. F. Young, B. R. Munson and T. H. Okiishi; A Brief Introduction to Fluid Mechanics, John Wiley, 2001
Métodos de ensino e atividades de aprendizagem
The modular course consists of two preliminary lectures and eight experiments performed by teams of two students each. The lab work is organized as follows: 1- Preparing for the experiment. The students should read and understand the laboratory protocol and read suggested reference materials prior to the lab session. In addition, some lab session time will usually be devoted to a discussion of the theory concern the experiment. 2- Running the experiment. Each team is responsible for conducting each experiment under supervision of instructor. 3- End of the experiment. Preliminary discussion of the experimental outcomes with instructor. 4- Report.
The final grade will be determined by proportionally weighting performance in the following assessment elements:
full reports (3 x 10 %) and technical reports and quizzes ( 5 x 10%); Individual practical examination
(10% ); participation in lab work as evaluated by instructor (10 %).
When possible, the evaluation will be carried out in presence.
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Participação presencial |
0,00 |
Apresentação/discussão de um trabalho científico |
0,00 |
Defesa pública de dissertação, de relatório de projeto ou estágio, ou de tese |
0,00 |
Exame |
0,00 |
Prova oral |
0,00 |
Teste |
0,00 |
Trabalho de campo |
0,00 |
Trabalho escrito |
60,00 |
Trabalho laboratorial |
40,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Apresentação/discussão de um trabalho científico |
0,00 |
Elaboração de projeto |
0,00 |
Elaboração de relatório/dissertação/tese |
0,00 |
Estudo autónomo |
0,00 |
Frequência das aulas |
0,00 |
Realização de Estágio |
0,00 |
Trabalho de campo |
0,00 |
Trabalho de investigação |
0,00 |
Trabalho escrito |
15,00 |
Trabalho laboratorial |
45,00 |
Total: |
60,00 |
Obtenção de frequência
The students may have 2 faults (absent) maximum.
Fórmula de cálculo da classificação final
10 % x Individual performance of the student in Laboratory
5 % x Preparation of classes
5 % x Laboratory Notes
40 % x Classification of written Reports (in group)
10 % x Classification of Report Discussion (individual)
30% x Classification of Laboratorial Exam