Analysis and Statistical Data Processing
Áreas Científicas |
Classificação |
Área Científica |
CNAEF |
Statistics |
Ocorrência: 2021/2022 - 2S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
TLQBVF |
27 |
Study Plan |
1 |
- |
4 |
45 |
108 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
The main objective is to provide a set of basic knowledge that will enable the student to perform a descriptive analysis on a set of data.
The student should be able to apply appropriate descriptive measures to the data being studied, understand how to sample correctly, and identify the constraints and limits of representativeness of a sample.
Resultados de aprendizagem e competências
Not applicable
Modo de trabalho
Presencial
Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)
Not applicable
Programa
Introduction to Statistics: Population, sample, variables. Classification of variables. Transformation of scales. - 1 Week
Univariate Descriptive Statistics: frequency tables; descriptive measures of location and dispersion; skewness and kurtosis coefficients; evaluation of sample dispersion; graphical representations of discrete, continuous, and qualitative data: histogram; bar graphs; pictogram; pie chart; stem-and-leaf, box-plotwith analysis of outliers; comparison of samples; other charts. - 3.5 Week
Bivariate Descriptive Statistics: cross-tables and contingency tables; scatter diagram; Pearson correlation and Spearman's rank correlation; simple linear regression. - 2,5 Weeks
Software to support the Univariate and Bivariate Descriptive Statistics classes: R or similar. - 3 Weeks
Probabilities: set theory; random experiments; sample space and events; operations on events; frequency approximation of probability; classical or Laplace's definition; axioms of probability; conditional probability; independent events and Bayes' formula; - 3 weeks
Relative frequency distributions and probability distributions: random variable; probability mass function and probability density function; mean vs expected value; sample standard deviation vs. population standard deviation. - 2 weeks
Bibliografia Obrigatória
Guimarães, R. Campos e Cabral, J.A Sarsfield; Estatística, McGraw-Hill, 1999
Hainant, L.; Conceitos e Métodos Estatísticos , Vol.1 e 2, Gulbenkian, 1997
Murteira, B. et al.; Introdução à Estatística, McGraw-Hill, 2002
Maroco, J.; Análise estatística – com utilização do SPSS (3ª Edição), Edições Sílabo, 2007
Daniel, W. W.; Biostatistics: A Foundation for Analysis in the Health Sciences., John Wiley & Sons, Inc., 1999
Bibliografia Complementar
Galvão de Mello; Probabilidades e Estatística, Escolar Editora, 2000
Lopes, A.; Probabilidades e Estatística, Reichmann & Afonso Editores, 2000
Métodos de ensino e atividades de aprendizagem
In theoretical-practical classes, reasoning is developed from concrete, elementary and practical situations: each concept/method is accompanied by examples, thus enabling mastery of statistical methods without difficulty.
Emphasis is placed more on concepts and situations than on demonstrations. Practical exercises will be solved in class and, whenever possible, using R or similar software. Students are encouraged to solve exercises at home as a way of consolidating what was taught in class.
Translated with www.DeepL.com/Translator (free version)
Software
R ou outro similar
Tipo de avaliação
Distributed evaluation with final exam
Componentes de Avaliação
Designation |
Peso (%) |
Teste |
70,00 |
Trabalho escrito |
30,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Estudo autónomo |
59,00 |
Frequência das aulas |
45,00 |
Trabalho escrito |
4,00 |
Total: |
108,00 |
Obtenção de frequência
Not applicable
Fórmula de cálculo da classificação final
Continuous Evaluation
Final Grade: 70% Tests (35% for each) + 30% Group Work
or
100% Exam
Provas e trabalhos especiais
Not applicable
Trabalho de estágio/projeto
Not applicable
Avaliação especial (TE, DA, ...)
-
Melhoria de classificação
-
Observações
-