Data Analytics
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Informática |
Ocorrência: 2021/2022 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
MES |
18 |
Plano de Estudos 2017-2018 |
1 |
- |
7,5 |
- |
202,5 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
At the end of this course the student should be able to:
• Identify the challenges and requirements for persisting and analyse big data
• To know the development phases of BI/Analytics projects
• Modelling and specifying a Datawharehouse
• Understand the best practices for coding the ETL process
• Conduct analytical queries to a multidimensional Datawharehouse through SQL OLAP extensions
• Evaluate, select and configure OLAP systems
• Differentiate and select several datamining algorithm classes, and their usage assumptions
• Develop visualizations for data and respective analyses results reporting, over existing platforms
Resultados de aprendizagem e competências
- Know how to guide a BI project
- Establish data models
- Properly select and apply algorithms for the problem
Modo de trabalho
Presencial
Programa
1. OLTP, OLAP and big data
2. Frameworks for BI project development
3. Dimensional data Modelling
4. Physical design of Datawharehouses
• New paradigms for distributed data persistence and processing
5. The ETL process
• Phases and Technologies
6. Analytical Query
• SQL OLAP extensions
• OLAP systems vs Emergent technologies and tools
7. Datamining
• Common applications
• Distinctions among supervised methods vs non-supervised
• Models evaluation
• Tools
8. Reporting and Visualization
• Technologies for development and configuring interactive visualization elements
9. BI and NoSQL sources
• Alternative data representations
• The complementarity and integration of hybrid systems
10. Module II: An Application Case: Web analytics
Bibliografia Obrigatória
Ralph Kimball e Margy Ross; The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, Wiley, 2002
Foster Provost, Tom Fawcett; Data Science for Business: What you need to know about data mining and data-analytic thinking (, O'Reilly Media, 2013. ISBN: 1449361323
Métodos de ensino e atividades de aprendizagem
Theoretical presentation of concepts. Analysis of case studies. Practical application of concepts
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Trabalho escrito |
50,00 |
Exame |
50,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Elaboração de projeto |
20,00 |
Trabalho escrito |
10,00 |
Trabalho laboratorial |
32,00 |
Estudo autónomo |
80,00 |
Frequência das aulas |
60,00 |
Total: |
202,00 |
Obtenção de frequência
Attendance at labs, seminar and project evaluation presentations
Fórmula de cálculo da classificação final
Module I (40%) = 20% Labs (min9)+ 30% Seminar (min9) + 50% test (min9)
Module II (60%) = 30% Labs (min9)+ 30% projet (min9)+ 40% test (min9)
Exame: 50% Projet (min9) + 50% Exam (min9)