Mechanics of Solids and Computational
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Solid Mechanics |
Ocorrência: 2021/2022 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
MP |
28 |
Plano de Estudos |
1 |
- |
6 |
0 |
162 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
Supply basic knowledge of the theory of elasticity and finite element method.
Resultados de aprendizagem e competências
At the end of the course the student should be able to:
Know the basics of the theory of elasticity and apply them in formulating and solving simple problems;
Understand the general concepts of the finite element method and know how to use a commercial software in solving problems of statics, dynamics and stability of structures.
Modo de trabalho
Presencial
Programa
1 - Stress
Introduction. Stress vector. State of stress at a point, Stress components. Equilibrium equations of stress. Stress transformation. Principal stresses and principal directions. Stationary values of shear stress. Graphical representation of the state of stress. Mohr's circle. Stresses on an octahedral plane. Spherical and deviatoric components of stress. Particular stress states. Plane stress.
2 - Strain
Introduction; General concepts. Strain components. Strain transformation. Principal strains and principal directions. Volume and shape variation. Compatibility equations. Graphical representation of the state of strain. Mohr's circle. Plane strain.
3 - Linear Stress-Extension-Temperature Relationships
Hooke's law for isotropic materials. Thermoelasticity equations for isotropic materials.
4 - Formulating and solving some problems of linear elasticity
Beam in pure bending. Thick cylinder subjected to internal and external pressure. Plane stress and plane strain: Airy stress function. Torsion of prismatic section members.
5 - The finite element method in structural analysis
Introduction and fundamental concepts. Principle of minimum potential energy;the Rayleigh-Ritz method. Analysis of bars and beams: Truss finite element; beam finite element. Two-dimensional problems: CST element. Plate analysis: Plate elements. Free Vibrations: Natural frequencies and mode shapes. Stability: Critical loads and buckling modes.
Bibliografia Obrigatória
A. Valido; Teoria da Elasticidade - Texto de apoio, 2011
Zienkiewicz, Taylor and Zhu; The Finite Element Method: Its Basis and Fundamentals, Seventh Edition, Elsevier, 2013. ISBN: 978-1-85617-633-0
Bibliografia Complementar
Timoshenko, S.P. and Goodier, J.N; Theory of Elasticity, Third Edition, McGraw-Hill International Editions, 1970
Robert D. Cook, David S. Malkus, Michael E. Plesha; Concepts and Applications of Finite Element Analysis, Third Edition, John Wiley & Sons, Inc., 1989. ISBN: 0-471-50319-3
Boresi, A.P., Schmidt, R.J. and Sidebottom, O.M.; Advanced Mechanics of Materials, Fifth Edition, John Wiley & Sons Inc., 1993. ISBN: 0-471-55157-0
Métodos de ensino e atividades de aprendizagem
Theoretical-Practical classes: Theoretical exposure of the subjects and problems solving by students.
Software
Programa Comercial de Elementos Finitos
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Teste |
60,00 |
Trabalho escrito |
40,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Estudo autónomo |
60,00 |
Frequência das aulas |
60,00 |
Trabalho escrito |
40,00 |
Total: |
160,00 |
Obtenção de frequência
a) Distributed assessment:
Performance of 1 test (Te) and 1 work project (TR)
b) Final exam assessment:
Performance a final exam (EX)
Fórmula de cálculo da classificação final
a) Distributed assessment:
NF = 0,6*Te + 0,4*TR
Conditions for approval in the course:
Te >= 8,0 values
NF >= 9,5 values
b) Final exam assessment:
NF = EX
Conditions for approval in the course:
NF >= 9,5 values
Observações
Students can recover the test in the exam period. The work project is done in group.