Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > MP12127
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Control Industry

Code: MP12127     Sigla: CI

Áreas Científicas
Classificação Área Científica
OFICIAL Controlo e Processos

Ocorrência: 2023/2024 - 2S

Ativa? Yes
Unidade Responsável: Departamento de Sistemas e Informática
Curso/CE Responsável:

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
MP 12 Plano de Estudos 1 - 6 0 162

Docência - Responsabilidades

Docente Responsabilidade
Artur Manuel Fortunato Graxinha
Artur Manuel Fortunato Graxinha

Docência - Horas

Theorethical and Practical : 3,00
Outra: 1,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 3,00
Artur Manuel Fortunato Graxinha 3,00
Outra Totais 1 1,00
Sérgio Fernando Pereira Delgado de Sousa 1,00

Língua de trabalho

Portuguese

Objetivos

Develop in students the ability to:


  1. Understand the differences between open and closed loop systems, model and identify the various components that can make up a feedback control system.

  2. Analyze and characterize systems, based on their time and frequency response.

  3. Understand the notions of absolute/relative stability.

  4. Analyze systems and design controllers, using the design method based on Root-Locus Analysis, as well as identifying the most appropriate method in view of the intended specifications for each system.

  5. Understand the basic control actions: Proportional (P), Integral (I) and Derivative (D) and their influence on the performance and stability of a feedback control system.

  6. Know how to use the Matlab/Simulink program to analyze and design control systems.

Resultados de aprendizagem e competências

At the end of the curricular unit, the student should be able to:


  • Model and represent physical systems and processes from the laws of physics using differential equations.

  • Represent and simplify systems using block diagrams.

  • Deduction of the transfer function of a system from its block diagram.

  • Use of the direct and inverse Laplace transform for mathematical representation of systems in the time and frequency domains.

  • Analyze and represent systems in the time and frequency domains.

  • Analyze steady-state errors.

  • Analyze the stability of systems (absolute, critical and instability).

  • Use SW tools (Matlab, Simulink and Tina TI) for modelling, computer simulation and analysis of systems in the time and frequency domains.

  • Use lead and lag compensators to solve transient response and stationary error aspects of systems.

  • Designing classic controllers: Basic control actions - Proportional (P), Integral (I) and Derivative (D), PID controller.

  • Design PID controllers using Ziegler-Nichols methods (critical gain and reaction curve).

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)


  • Trigonometry and Complex Numbers, Integral and Differential Calculus, Laplace Transforms.

Programa

T/TP classes
1 – Introduction to control systems. Basic control concepts: processes; variables involved; disturbances and noise; feedforward control; feedback control; control chain diagram.
2 - Modeling and representation of systems: Differential equations, Laplace transform, transfer function. Poles and zeros. Block diagrams.
3 - Temporal response of 1st and 2nd order systems. Response characterization. Dominant poles. Steady state error.
4 - Stability: Notion of stability. Absolute and relative stability. Routh-Hurwitz method.
5 – Root-Locus: Module condition and argument condition. Rules for building the LGR diagram for positive gain. Root-locus depending on any parameter.
6 - Design of phase lead and lag compensators based on Root-Locus.
7 – Frequency domain response: Bode diagrams, asymptotic approximation, exact curves. Minimum phase systems. Relative stability, Gain and Phase margin, robustness. Relationships between temporal response and frequency response.
8 – Design of classic controllers and compensators: The basic actions of control - Proportional (P), Integral (I) and Derivative (D). The PID controller. Design of PID controllers: Ziegler-Nichols methods (critical gain and reaction curve). Reset-windup: consequences and solutions.
9 - PID tuning method SIMC (Skogestad Internal Model Cointroller)

Laboratory classes:
Lab1. Modeling and temporal analysis
Lab2. Root-Locus
Lab3. anticipatory control
Lab4. steady-state error control
Lab5. ATV PID

Bibliografia Obrigatória

Katsuhiko Ogata; Engenharia de Controle Moderno - 5ª ed, Pearson, 2010. ISBN: 978-8576058106
Norman S. Nise; Engenharia de Sistemas de Controle - 7ª Ed, LTC - Livros Tecnicos e Cientificos Editora, 2017. ISBN: 9788521634355
Docentes da disciplina; Acetatos da disciplina disponíveis na Página da Disciplina do Moodle
Docentes da disciplina; Guias dos Laboratórios (Disponibilizados no Moodle)

Métodos de ensino e atividades de aprendizagem


  1. Theoretical expository supported with practical examples of application associated with the industrial environment and other demonstrations supported by SW's.

  2. Practical, through the resolution of problems and exercises representing the theoretical component and the written assessment of the UC.

  3. Laboratory through:


    1. Computer simulation of systems.

    2. Problem solving.

    3. Analysis of practical cases and other examples.


Software

Matlab/Simulink
Tina/TI

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Exame 70,00
Trabalho laboratorial 30,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 98,00
Frequência das aulas 40,00
Trabalho escrito 4,00
Trabalho laboratorial 20,00
Total: 162,00

Obtenção de frequência

Approval in the subject is achieved through:


  1. Completion of 2 written tests or exam and the planned laboratory work



  • Test 1 and Test 2 with a minimum score of 8.0 Values.

  • The Average of Test1 and Test2 has a minimum rating greater than or equal to 9.5 values (>=9.5 values) on a scale 0-20.

  • The Exam classification has a minimum classification greater than or equal to 9.5 values (>=9.5 values) on a scale of 0-20.

  • Performance of all laboratory work with a minimum classification (in each laboratory work) greater than or equal to 9.5 values (>=9.5 values) on a scale of 0-20.

Fórmula de cálculo da classificação final


  • Considering T as the average of the two tests (>=9.5 val.) or the exam grade (>=9.5 val.). Grades greater than or equal to 17 are defended in an oral test.

  • Considering L as the average of all laboratory work (L>=9.5)

  • The final classification is obtained as follows: CF=0.7*T+0.3*L

Provas e trabalhos especiais

Nothing to add to what has been presented.

Trabalho de estágio/projeto

Nothing to add to the presented laboratory work.

Avaliação especial (TE, DA, ...)

Nothing to add beyond what is provided for in ESTSetúbal's regulations.

Melhoria de classificação

The improvement of the classification can be obtained through the accomplishment of the exams foreseen in the regulations of ESTSetúbal.
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 11:32:32