Statistics I
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Matemática |
Ocorrência: 2023/2024 - 2T
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
TGI |
66 |
Plano de Estudos 2016 |
2 |
- |
4 |
44 |
108 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
• Provide basic training on statistical learning techniques and theory.
• Identify the main theoretical models studied.
• Construct and interpret confidence intervals.
• Construct and interpret parametric hypothesis tests.
• Estimate and interpret linear regression model parameters.
• Apply statistical inference techniques as a decision support tool and interpret the results obtained.
• Analyze, evaluate, interpret and critically defend the results obtained.
Resultados de aprendizagem e competências
This Curricular Unit is intended to acquire and apply knowledge of Statistics, so that the student can use basic tools in this area, such as techniques and methodologies in data processing, and that allow the student to develop the capacity for analysis and reasoning to certain phenomena, namely in the field of Technology and Industrial Management.
Modo de trabalho
Presencial
Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)
Basic knowledge at the level of 12th grade mathematics and basic notions of integral calculus.
Programa
1. Descriptive Statistics
Qualitative and quantitative variables. Frequency tables and graphic representations. Location and dispersion measures.
2. Random Variables
Notion of random variable. Probability and density functions of discrete and continuous random variables, respectively. Distribution function. Location and dispersion parameters: expected value, variance and standard deviation; characterization and properties.
3. Theoretical Distributions
Discrete Theoretical Distributions: Binomial Distribution and Poisson Distribution; characterization, parameters and properties. Continuous Theoretical Distributions: Exponential Distribution and Normal Distribution; characterization, parameters and properties. Brief reference to the t-Student distribution.
4. Simple Linear Regression
Simple linear regression model: estimation, model validation and inference.
Bibliografia Obrigatória
Reis, E.; e outros; , Estatística Aplicada, Edições Sílabo, 2003
Bibliografia Complementar
Graça, M. E..; Introdução às Probabilidades e Estatística, FCUL, Sociedade Portuguesa de Estatística, 1998
Galvão de Melo, F.; Probabilidades e Estatística, Escolar Editora, 1993
Métodos de ensino e atividades de aprendizagem
In theoretical and practical classes, the expository method and problem solving are combined.
Remotely on the Moodle platform and on the Microsoft Teams platform, they access the UC contents through various materials and are proposed to carry out weekly activities.
Tipo de avaliação
Distributed evaluation with final exam
Componentes de Avaliação
Designation |
Peso (%) |
Teste |
60,00 |
Trabalho escrito |
40,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Estudo autónomo |
86,00 |
Frequência das aulas |
22,00 |
Total: |
108,00 |
Obtenção de frequência
The use of this curricular unit can be obtained through two assessment processes: Continuous Assessment or Assessment by Exams.
Fórmula de cálculo da classificação final
The Continuous Assessment presupposes the completion of 1 test and 1 group work.
Designating the classification (from zero to 20, rounded to the nearest hundredths) obtained in the test by T and the group work grade by NTG, the final classification CF (rounded to the nearest integer) will be calculated as follows:
CF=T * 0.60+0.4 NTG