Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > MES7
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Information Visualisation

Code: MES7     Sigla: VI

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2023/2024 - 2S

Ativa? Yes
Unidade Responsável: Departamento de Sistemas e Informática
Curso/CE Responsável:

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
MES 8 Plano de Estudos 2017-2018 1 - 7,5 - 202,5

Docência - Responsabilidades

Docente Responsabilidade
Miguel Angel Guevara López

Docência - Horas

Theorethical and Practical : 2,00
Practical and Laboratory: 2,00
Orientação Tutorial: 1,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 2,00
Miguel Angel Guevara López 2,00
Practical and Laboratory Totais 1 2,00
Miguel Angel Guevara López 2,00
Orientação Tutorial Totais 1 1,00
Miguel Angel Guevara López 1,00

Língua de trabalho

Portuguese - Suitable for English-speaking students

Objetivos


  1. To introduce students to the fundamental problems, concepts, and approaches in the design and analysis of data visualization systems.

  2. To familiarize students with the stages of the visualization pipeline, including data modeling, mapping data attributes to graphical attributes, perceptual issues, existing visualization paradigms, techniques, and tools, and evaluating the effectiveness of visualizations for specific data, task, and user types.

  3. To enable students to develop complex / advanced interactive information visualization systems.

Resultados de aprendizagem e competências

After a brief introduction of the object, methods, and reference model (aka pipeline) of Information Visualization, the course will provide the student with theoretical knowledge about human visual perception and its practical use applied to information visualization systems, particularly on how to enhance the capabilities of human visual perception avoiding and circumventing its limitations. Based on this theoretical and practical knowledge, the reference model of Information Visualization is deepened and the essential knowledge on interaction with visualization systems, the types of data and representations for these data is introduced, addressing with particular care multidimensional data, text, and time variables. Finally, main information visualization techniques for virtual and augmented reality environments are introduced through familiarization with the main development tools.

Modo de trabalho

Presencial

Programa


  1. Introduction to Information Visualization

    • Definition

    • Basic concepts

    • Computers vs. Humans

    • Constraints



  2. Data Abstraction

    • Data types

    • Dataset types

    • Attribute types

    • Semantics



  3. Task Abstraction

    • Actions

      • Analyze

      • Produce

      • Search

      • Query



    • Targets

    • Analyzing and Deriving



  4. Analysis – Levels for Validation

    • Levels of Design

    • Angles of Strike

    • Validation Approaches

      • Domain

      • Abstraction

      • Idiom

      • Algorithm

      • Mismatches



    • Examples of Validation



  5. Marks and Channels

    • Defining Marks and Channels

      • Channel Types

      • Mark Types



    • Using Marks and Channels

    • Channels Effectiveness



  6. Rules of Thumb

    • 2D

    • 3D

    • Eyes vs Memory

    • Resolution vs Immersion

    • Overview and Detail

    • Responsiveness Capacity



  7. Arrange Tables

    • Arrange by Keys and Values

    • Separate, Order, and Align

    • Spatial Axis Orientation

    • Spatial Layout Density



  8. Arrange Spatial Data

    • Geometry

    • Scalar Fields

    • Vector Fields

    • Tensor Fields



  9. Arrange Networks and Trees

    • Connection – Link Marks

    • Matrix Views

    • Hierarchy Marks



  10. Map Color and Other Channels

    • Color Theory

    • Colormaps

    • Other Channels



  11. Manipulate Views

    • Change View over Time

    • Select Elements

    • Changing Viewpoint

    • Reducing Attributes



  12. Facet into Multiple View

    • Juxtapose and Coordinate Views

    • Partition into Views

    • Superimposed layers



  13. Reduce Items and Attributes

    • Filter

    • Aggregate



  14. Embed: Focus + Context

    • Elide

    • Superimpose

    • Distort

    • Costs and Benefits: Distortion



  15. Applications: Case Studies

Bibliografia Obrigatória

Collin Ware ; Information Visualization: PERCEPTION FOR DESIGN. Fourth Edition, Morgan Kaufmann, 2021
Christian Tominski, Heidrun Schumann; Interactive Visual Data Analysis, CRC Press Taylor and Francis Group. , 2020
Robert Grant ; Data Visualization Charts, Maps, and Interactive Graphics, Chapman and Hall/CRC, 2018
Claus O. Wilke ; Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures, O’Reilly, 2019

Bibliografia Complementar

Abha Belorkar ; Interactive Data Visualization with Python Second Edition, Packt Publishing, 2020
Ossama Embarak; Data Analysis and Visualization Using Python: Analyze Data to Create Visualizations for BI Systems, APRESS, 2018
T. Munzner ; Visualization Analysis & Design: Abstractions, Principles, and Methods, CRC Press, 2014

Métodos de ensino e atividades de aprendizagem

Teaching will have 3 major components:

  • Theoretical-practical classes - partly expository and with intensive recourse to the accompanied resolution of exercises, analysis of case studies and two seminars on specific topics, which will take place 50% in person and 50% virtual (online).
  • - Laboratory classes and/or seminars - for supervised execution and individual assessment of practical work in a computing environment for personal computers, internet, and mobile devices.
  • - Tutorial guidance - for personalized monitoring of the execution of distance projects.

Document files will be made available with the subject of laboratory exercises to be executed autonomously (asynchronous regime), but with monitoring by videoconference at the established time and, the use of synchronous classes (by video conference) for clarification of doubts and individual monitoring.

 

Software

Anaconda Distribution (Linguagem de Programação Python + Módulos de Análise e Visualização de Dados)
IDE: Visual Studio Code

Tipo de avaliação

Distributed evaluation without final exam

Componentes de Avaliação

Designation Peso (%)
Apresentação/discussão de um trabalho científico 20,00
Teste 30,00
Trabalho laboratorial 50,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Apresentação/discussão de um trabalho científico 4,00
Elaboração de projeto 40,00
Estudo autónomo 30,00
Trabalho de investigação 30,00
Frequência das aulas 60,00
Trabalho laboratorial 30,00
Total: 194,00

Obtenção de frequência

The evaluation will cover all 3 components, namely:

  • Through two seminars for which students will have to independently prepare their presentations. Theoretical knowledge, analysis and interpretation skills will be assessed.
  • Through a selection of the best laboratories, accompanying execution skills will be evaluated.
  • Through the execution of a project (individual or up to 2 students) the capacity for autonomous work and execution will be evaluated.

Fórmula de cálculo da classificação final

Final evaluation will be:

50% Project + 10% Laboratories + 10% Seminar 1 + 10% Seminar 2 + 30% Test
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 16:51:46