Artificial Intelligence for Videogames
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Ciências Informáticas |
Ocorrência: 2023/2024 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
DVAM |
14 |
Plano_estudos_2018_19 |
2 |
- |
6 |
60 |
162 |
Docência - Responsabilidades
Língua de trabalho
Portuguese
Objetivos
Provide students with knowledge of problem-solving methods based on Artificial Intelligence techniques.
Provide students with programming skills for state space search algorithms and other algorithms used in game theory.
Resultados de aprendizagem e competências
Understand different artificial intelligence techniques and know their advantages and disadvantages.
Being able to implement AI techniques to solve problems in the area of video games.
Develop group skills and autonomous work skills.
Modo de trabalho
Presencial
Programa
Program Contents
- Introduction to Artificial Intelligence
- Search Algorithms
- Exhaustive Methods
- Constraint Satisfaction
- Informed Methods
- Heuristics-Based Searches
- Game Theory
- Games as State-Space Search Problems
- Minimax Algorithm
- Alpha-Beta Algorithm
- Specific AI applications in video game development
- Intelligent Agents
- Navigation and wayfinding
- Procedural Content Generation
- Genetic Algorithms
Bibliografia Obrigatória
Stuart Russel, Peter Norvig; Artificial Intelligence: A Modern Approach
Bibliografia Complementar
Ian Millington, John Funge; Artificial Intelligence for Games, 2nd edition
Métodos de ensino e atividades de aprendizagem
Regarding theoretical concepts, an expository methodology will be used with analogies to present the various concepts, followed by a participatory methodology with regard to the discussion of the examples presented.
Regarding the practical component, the methodology will be essentially active and participatory using problem solving, analysis of real cases and proposal/development of new solutions.
Tipo de avaliação
Distributed evaluation without final exam
Componentes de Avaliação
Designation |
Peso (%) |
Teste |
40,00 |
Trabalho laboratorial |
60,00 |
Total: |
100,00 |
Componentes de Ocupação
Designation |
Tempo (Horas) |
Elaboração de projeto |
62,00 |
Estudo autónomo |
40,00 |
Frequência das aulas |
60,00 |
Total: |
162,00 |
Obtenção de frequência
4 mini-projects (game jams) in which they implement:
[15%] Search Algorithms (In particular A*)
[15%] Alpha-Beta Algorithm
[15%] Procedural Generation
[15%] Machine Learning (Reinforcement Learning)
One test, corresponding to 40%.
Fórmula de cálculo da classificação final
MP - Mini Project
T - Test
FINAL = MP1 * 0.15 + MP2 * 0.15 + MP3 * 0.15 +MP4 * 0.15 + T * 0.4