Saltar para:
Esta página em português Ajuda Autenticar-se
ESTB
Você está em: Start > BINF022
Autenticação




Esqueceu-se da senha?

Data Mining

Code: BINF022     Sigla: DM

Áreas Científicas
Classificação Área Científica
OFICIAL Informática

Ocorrência: 2021/2022 - 2S

Ativa? Yes
Unidade Responsável: Matemática e Informática
Curso/CE Responsável: Undergraduate in Bioinformatics

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
BINF 30 Study Plan 2 - 5 67,5 135

Docência - Responsabilidades

Docente Responsabilidade
Ana de Jesus Pereira Barreira Mendes

Docência - Horas

Theorethical and Practical : 4,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 4,00
Luís António Pissarra de Matos Agonia Pereira 2,00
Ana de Jesus Pereira Barreira Mendes 2,00
Mais informaçõesA ficha foi alterada no dia 2022-04-20.

Campos alterados: Métodos de ensino e atividades de aprendizagem, Fórmula de cálculo da classificação final, Bibliografia Obrigatória, Software de apoio à Unidade Curricular, Componentes de Avaliação e Ocupação, Obtenção de frequência

Língua de trabalho

Portuguese

Objetivos


  • Understand the main concepts related with Business Intelligence, namely DataWarehouse, ETL and Reporting Tools and the technological infrastructure;

  • Understand the importance of Business Analytics as a practice of iterative data exploration, to enable the decision making.

  • Understand the importance of Data Mining in organizations

  • Knowledge Discover in Databases through Data Mining techniques;

  • Understand the main concepts, methodologies and Data Mining techniques.

Resultados de aprendizagem e competências


  • Understand the main concepts related with Business Intelligence, namely DataWarehouse, ETL and Reporting Tools and the technological infrastructure;

  • Understand the importance of Business Analytics as a practice of iterative data exploration, to enable the decision making.

  • Understand the importance of Data Mining in organizations

  • Knowledge Discover in Databases through Data Mining techniques;

  • Understand the main concepts, methodologies and Data Mining techniques.

Modo de trabalho

Presencial

Programa

1. The challenges of Data Modeling and Analysis in Bioinformatics
2. Business Intelligence and Infrastructure
3. Fundamentals of Data Mining
4. Data Mining and Bioinformatics
5. Current and Future Trends

Bibliografia Obrigatória

Han, J., Kamber, M.; Data Mining – Concepts and Techniques, Morgan Kaufmann , 2011
He, Z.; Data Mining for Bioinformatics Applications, Elsevier Ltd., 2015
Kudyba, S.; Big Data, Mining, and Analytics: Components of Strategic Decision Making, Taylor & Francis Group, LLC, 2014
Larose, D. e Larose C.; Data Mining and Predictive Analytics, John Wiley & Sons, Inc, 2015
Provost, F. e Fawcett, T.; Data Science for Business: What you need to know about data mining and data-analytic thinking., O'Reilly Media, 2013
Sharda, R.; Delen, D. and Turban, E.; Business Intelligence, Analytics and Data Science: A Managerial Approach, Pearson, 2018
Shmueli,G.; Bruce,P.; Gedeck, P.; Patel, N.; Data Mining for Business Analytics: Concepts, Techniques and Applications in Python, Wiley, 2020

Métodos de ensino e atividades de aprendizagem

Methodologies:

- Expository and Participatory in order to promote learning by discovery, through individual and group exploration about the Business Intelligence importance, and the supporting infrastructure, and concepts application and practical use cases resolution, supported by exercises that allow concretization the main concepts of Business Intelligence application and Knowledge Discovery in Databases through Data Mining techniques application.


In order to foster the development of group skills, a group work will be carried out and respective discussion in the specific learning area will take place.

If the individual knowledge assessment test is done in distance learning mode, and if the student obtains in this assessment test a classification equal to or higher than 17 points, the student must take an oral assessment to defend the obtained classification.

Software

Microsoft PowerBI
Anaconda - Jupyter Notebook

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Apresentação/discussão de um trabalho científico 20,00
Teste 60,00
Trabalho escrito 20,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Trabalho escrito 34,00
Apresentação/discussão de um trabalho científico 1,00
Estudo autónomo 40,00
Frequência das aulas 60,00
Total: 135,00

Obtenção de frequência

To get approval in this unit the final grade must be equal to or greater than 10 points

Fórmula de cálculo da classificação final

Continuous assessment comprises:
- Preparation, presentation and discussion of a group work (TG) - 40%;
- two individual tests - 50% and
- activities during classes - 10%.

Avaliação especial (TE, DA, ...)

Individual final exam.

Melhoria de classificação

Improved classification includes an individual final exam.

Observações

In case of irregular situation detection (fraud) in the assessment process will be applied the Students Disciplinary Regulations of the Polytechnic Institute of Setúbal (Despacho No. 13714/2016, published in Diário da República, 2nd series, No. 219 on November 15th) taking also into consideration the Despacho No. 40/Presidente/2021 "Measures to be adopted in situations associated with fraud in the evaluation processes of the courses taught in IPS schools".
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia do Barreiro  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-23 às 14:29:29