Saltar para:
Esta página em português Ajuda Autenticar-se
ESTS
Você está em: Start > TINF19
Autenticação




Esqueceu-se da senha?

Campus Map
Edifício ESTS Bloco A Edifício ESTS Bloco B Edifício ESTS Bloco C Edifício ESTS Bloco D Edifício ESTS Bloco E Edifício ESTS BlocoF

Algorithms and Abstract Data Types

Code: TINF19     Sigla: ATAD

Áreas Científicas
Classificação Área Científica
OFICIAL Ciências Informáticas

Ocorrência: 2022/2023 - 1S

Ativa? Yes
Unidade Responsável: Departamento de Sistemas e Informática
Curso/CE Responsável: Professional Technical Higher Education Courses in Informatics Technologies (Turma do Programa BrightStart)

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
TINFT 21 Plano Estudos_2018_19 1 - 6 60 162

Docência - Responsabilidades

Docente Responsabilidade
Fábio Ferrentini Sampaio

Docência - Horas

Theorethical and Practical : 4,00
Type Docente Turmas Horas
Theorethical and Practical Totais 1 4,00
Fábio Ferrentini Sampaio 4,00

Língua de trabalho

Portuguese
Obs.: Português

Objetivos

Students have to  acquire and consolidates knowledge, 
skills and competences in:
- interpretation, analysis, specification and
implementation of trivial computing algorithms,
e.g., selection algorithms, research, ordering;
iterative and recursive algorithms; in the analysis
component, emphasis will be given to the temporal
complexity of the algorithms;
- specification and manipulation of linear data
structures (static and dynamic) and scatter tables;
- understanding, use and implementation of the most
common abstract data types (collection type), e.g.,
Stack, Queue, List, Map;
- specification of new TADs, choice of an appropriate data structure and its implementation and use;
- (in parallel) acquisition of skills in object-oriented
programming and use of generic types and exceptions in
the implementation of TADs.

Resultados de aprendizagem e competências

Students should be able to analyze a problem and 
choose appropriate algorithms for its solution in
order to minimize, mainly, the costs of processing
time and memory, using the resources of the programming
language proposed for the work.

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)

Initial knowledge of JAVA programming.

Programa

- Algorithms, algorithmic complexity and formalization of algorithms in pseudo-code;
- Search and selection algorithms;
- Simple sorting algorithms O(n²) - Bubble Sort and Selection Sort;
- Recursive versus iterative algorithms;
- Complexity of sorting algorithm, e.g., O(n log n) - Quick Sort;
- Referenced data types, generic types, and conceptual recap of interfaces and exceptions.
- Use of a TAD given its interface; creation of test units for validation of TAD implementations;
- Definition and manipulation of a static linear data structure, e.g. arraylist;
- Specification and implementation of the most common abstract data types (collection type),
e.g. Stack, Queue, List and Map, using a static data structure;
- Implementation and manipulation of dynamic linear data structures, e.g. linked lists;
- Implementation of the previous abstract data types, using a dynamic data structure;
- Hash tables and use of this data structure in a TAD Map implementation (=Hash tables)

Bibliografia Obrigatória

António Adegro da Rocha; ESTRUTURAS DE DADOS E ALGORITMOS EM JAVA

Bibliografia Complementar

António Adrego da Rocha; ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

Observações Bibliográficas

websites such as w3schools.

Métodos de ensino e atividades de aprendizagem

Teoric and practical classes with proposed exercises
and practical project.

Palavras Chave

Technological sciences > Technology > Computer technology > Software technology

Tipo de avaliação

Distributed evaluation with final exam

Componentes de Avaliação

Designation Peso (%)
Participação presencial 10,00
Teste 45,00
Trabalho laboratorial 45,00
Total: 100,00

Componentes de Ocupação

Designation Tempo (Horas)
Estudo autónomo 50,00
Trabalho laboratorial 50,00
Total: 100,00

Obtenção de frequência

Presential.

Fórmula de cálculo da classificação final

Minimum average of 9.5 points for APPROVAL AT THE Curricular Unit.

Restrictions:

- In each test there is a minimum score of 8.0 and 9.5
on average.
- The Project has a minimum score of 8.0.
- There is a minimum score of 9.5 in the Exams
(Regular Season and/or Appeal).

The final grade (NF) is calculated according to the
following formula:
NF1 = (Theoretical1*25% + Theoretical2*25%)+ (Project * 50%)


For the Exams of the Period of Appeal or Special Period,
the calculation of the final note is calculated directly
from the value of the exam grade, which cannot be less than 9.5.

 

Provas e trabalhos especiais

Does not exist.

Trabalho de estágio/projeto

Does not exist.

Avaliação especial (TE, DA, ...)

Does not exist.

Melhoria de classificação

Does not exist.

Observações

Initial knowledge of JAVA language.
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2024-11-24 às 03:14:14